\(\Delta ABC\)có BC cố định, A di động trên đường thẳng d cố định và d song song với...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

d A B C E F

kẻ BE và CF vuông góc với d thẳng d 

Do ( d ) // với BC => BEFC là hình chữ nhật

\(\Rightarrow C_{ABC_{nn}}\Leftrightarrow C\left(BEA+CFE\right)_{LN}\)

\(C\left(BEA+CFA\right)_{LN}\Leftrightarrow AB=AC\)

\(\Leftrightarrow\Delta ABC\)cân 

a: Xét tứ giác BFED có 

ED//BF

FE//BD

Do đó: BFED là hình bình hành

Xét ΔABC có

D là trung điểm của BC

DE//AB

Do đó: E là trung điểm của AC

Xét ΔABC có 

E là trung điểm của AC

EF//CB

Do đó: F là trung điểm của AB

Xét ΔCDE và ΔEFA có 

CD=EF

DE=FA

CE=EA

Do đó: ΔCDE=ΔEFA

b: Gọi ΔABC có F là trung điểm của AB,E là trung điểm của AC

Trên tia FE lấy điểm E sao cho E là trung điểm của FK

Xét tứ giác AFCK có 

E là trung điểm của AC

E là trung điểm của FK

Do đó: AFCK là hình bình hành

Suy ra: AF//KC và KC=AF

hay KC//FB và KC=FB

Xét tứ giác BFKC có 

KC//FB

KC=FB

Do đó: BFKC là hình bình hành

Suy ra: FE//BC(ĐPCM)

4 tháng 9 2018

31 tháng 7 2017

A B C D E F

* Xét tam giác BDE và tam giác EFB có:

+) \widehat{DEB} = \widehat{EBF} ( so le trong)

+) BE chung

+) \widehat{FEB} = \widehat{DBE} ( so le trong)

=> Tam giác BDE = tam giác EFB ( g.c.g )

=> EF = BD ( 2 cạnh tương ứng)

* Mà AD = BD ( D là trung điểm của AB)

=> EF = AD. ( cpcm)