\(\Delta ABC\)có BA=BC

a) So sánh góc \(\widehat{A}\)

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 11 2017

Ta có hình vẽ: B A C E D

(Hình vẽ chỉ mang tính chất minh họa kkkk)

Giải

Ta có: \(\Delta ABC\)\(BA=BC\) nên \(\Delta ABC\) cân

a)Áp dụng định lí trong tam giác cân ta có: \(\widehat{A}=\widehat{C}\)

b) Theo đề bài ta có: \(\left\{{}\begin{matrix}BD=CD=\dfrac{1}{2}BC\\AE=BE=\dfrac{1}{2}BA\end{matrix}\right.\)

\(BC=BA\left(gt\right)\) nên \(\dfrac{1}{2}BC=\dfrac{1}{2}BA\) nên \(BD=CD=AE=BE\)

Xét 2 tam giác \(BDA\)\(BEC\) ta có:

\(\left\{{}\begin{matrix}BA=BC\left(gt\right)\\BD=BE\left(gt\right)\\\widehat{BCA}=\widehat{BAC}\end{matrix}\right.\Leftrightarrow\Delta BDA=\Delta BCE\left(c.g.c\right)\)

\(\Rightarrow\widehat{BDA}=\widehat{BEC}\)(2 góc tương ứng)

suy ra 1 cái phụ luôn: \(DA=EC\)(2 cạnh tương ứng)

c) Xét 2 tam giác \(ACE\)\(CAD\) ta có:

\(\left\{{}\begin{matrix}AC-chung\\CE=AD\\AE=CD\end{matrix}\right.\Leftrightarrow\Delta ACE=\Delta CAD\left(c.c.c\right)\)

\(\Rightarrow\widehat{ACE}=\widehat{CAD}\)(2 góc tương ứng)

23 tháng 11 2017

B A C E D

a, Vì BA = BC => \(\Delta ABC\) cân tại B => \(\widehat{A}=\widehat{C}\)

b, Vì BA = BC => BE = BD 

Xét \(\Delta BDA\) và \(\Delta BEC\) có:

BA = BC (gt)

BD = BE (cmt)

\(\widehat{B}\): chung

Do đó \(\Delta BDA=\Delta BEC\left(c.g.c\right)\)

=> \(\widehat{BDA}=\widehat{BEC}\) (2 góc t/ứ)

c, Vì \(\Delta BDA=\Delta BEC\Rightarrow\widehat{BAD}=\widehat{BCE}\) (2 góc tương ứng)

Mà \(\widehat{A}=\widehat{C}\)  (câu a)

Do đó \(\widehat{A}-\widehat{BAD}=\widehat{C}-\widehat{BCE}\) hay \(\widehat{CAD}=\widehat{ACE}\)

19 tháng 11 2017

A B C D E F M K

a.Xét \(\Delta ABC\)và \(\Delta DEF\)có:

AB=DE và AC=DF(gt)

\(\widehat{BAC}=\widehat{DEF}\)(gt) chỗ này đề bn sai

=> \(\Delta ABC=\Delta DEF\left(cgc\right)\)

b. vì 2 tam giác = nhau 

=> BC=EF(2 cạnh tương ứng)

Mà  M và K lần lượt là trung điểm của BC và EF.

=> CM=FK

c.Vì 2 tam giác ABC và DEF bằng nhau nên:

\(\widehat{ACB}=\widehat{DFE}\)(2 góc tương ứng)

Xét \(\Delta ACM\)và \(\Delta DFK\)có:

AC=DF(gt)

\(\widehat{ACB}=\widehat{DFE}\)(ch/m trên)

CM=FK(ch/m trên)

=>\(\Delta ACM\)=\(\Delta DFK\)(cgc)

=> AM =DK(2 cạnh tương ứng)

19 tháng 11 2017

đề có chút sai hay sao ý

xét tan giác ABH và ACH

AB=AC (gt)

BH=BC (gt)

AH là cạnh chung

vây tam giác ABH=ACH (c.c.c)

vậy goc AHB=AHC (2 góc tương ứng)

vì AHB+AHC=180 (kề bù)

Mà AHB=AHC

vậy AHB=AHC=180:2=90

vậy AH vuông góc với BC

vi CB vuông góc Cx (gt)

AH vuông góc BC (cmt)

vậy Cx//AH

tam giác vuông EBC có E+B=90

tam giác vuông AHB có BAH+ B=90

Vậy BAH=BEC hay BAH=AEC

23 tháng 4 2018

bn tự vẽ hình nha
a) + Tg ABC có B> C (GT) => AC> AB 
 BH, CH lần lượt là hình chiếu của AB và AC lên đường thẳng BC
Mà AC>AB (CMT)=> HC> HB -> đpcm
 



 

27 tháng 3 2019

https://olm.vn/hoi-dap/detail/65705170709.html

tham khảo

4 tháng 11 2019

a/ tam giác BAH và tam giác CAH có 

AB=AC ( tam giác ABC cân vì góc B = góc C)

góc BHA = góc CHA = 90 độ

góc B = góc C

=> tam giác BAH = tam giác CAH (CH - GN)

=>góc BAH = góc HAC

Cho \(\Delta ABC\)có các góc nhỏ hơn \(120^0\).Vẽ ra phía ngoài \(\Delta ABC\)các tam giác đều \(ABD,ACE.\)a)Gọi \(M\)là giao điểm của \(BE\)và \(CD.\)Chứng minh \(\widehat{AMB}=\widehat{AMC}=\widehat{BMC}.\)b)Trên tia phân giác của \(\widehat{BMC}\)lấy điểm \(K\)sao cho \(MK=MB+MC\).Chứng minh \(\Delta KBC\)đều.c)Gọi \(I\)là trung điểm của \(AC,\)\(G\)là trọng tâm của \(\Delta KBC.\)Tính các góc của\(\Delta GID.\)d)Hãy...
Đọc tiếp

Cho \(\Delta ABC\)có các góc nhỏ hơn \(120^0\).Vẽ ra phía ngoài \(\Delta ABC\)các tam giác đều \(ABD,ACE.\)

a)Gọi \(M\)là giao điểm của \(BE\)và \(CD.\)Chứng minh \(\widehat{AMB}=\widehat{AMC}=\widehat{BMC}.\)

b)Trên tia phân giác của \(\widehat{BMC}\)lấy điểm \(K\)sao cho \(MK=MB+MC\).Chứng minh \(\Delta KBC\)đều.

c)Gọi \(I\)là trung điểm của \(AC,\)\(G\)là trọng tâm của \(\Delta KBC.\)Tính các góc của\(\Delta GID.\)

d)Hãy cho biết khẳng định\("\)nếu \(\widehat{BAC}=\frac{\widehat{AMC}+\widehat{BMC}+\widehat{AMB}}{6}\)thì điểm \(M\)cách đều các cạnh của \(\Delta ABC\)\("\)có đúng không?Vì sao?

e)Trên một nửa mặt phẳng có chứa điểm \(C\) bờ \(AB,\)vẽ  tam giác đều \(ABF.\)Giả sử rằng \(\widehat{BAC}=\widehat{ACB}+\widehat{ABC}\)và \(AB=\frac{1}{2}BC,\)chứng minh \(F\)là trung điểm của \(BC.\)

3
26 tháng 5 2017

bài này khó nhất là hai câu a và c.

26 tháng 5 2017

a) Ta có \(\Delta ADC=\Delta ABE\) (c-g-c) => \(\Rightarrow\widehat{ADC}=\widehat{ABE}\)(2 c t/ứ )

Gọi giao điểm của AB và CD là K

Ta có: \(\widehat{ADK}+\widehat{AKD}+\widehat{DAK}=180^0\) (Đl Py-ta-go)

\(\widehat{BMK}+\widehat{BKM}+\widehat{KBM}=180^0\)(Đl Py-ta-go)

\(\Rightarrow\widehat{BMK}=\widehat{KAD}=60^0\)\(\Rightarrow\widehat{BMC}=120^0\)

Gọi J là trung điểm DM

C/m \(\Delta DJB=\Delta AMB\) rồi c/m được \(\widehat{BMA}=120^0\)

rồi suy ra \(\widehat{AMC}=120^0\) \(\Rightarrow\)\(\widehat{AMB}=\widehat{AMC}=\widebat{BMC}\)