K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Gọi H là trung điểm của BC. Trên tia đối của tia AM lấy K sao cho AM=MK

Xét \(\Delta AMN\)và \(\Delta KMB\)\(\hept{\begin{cases}AM=MK\\\widehat{AMN}=\widehat{KMB}\\MB=MN\end{cases}}\)

\(\Rightarrow\Delta AMN=\Delta KMB\left(c.g.c\right)\)

\(\Rightarrow\widehat{MAN}=\widehat{MKB}\)

\(\Rightarrow AN=BK=AM\)

mà \(AB>AM\Rightarrow AB>BK\)

\(\Rightarrow\widehat{BKA}>\widehat{BAK}\)

\(\Rightarrow\widehat{MAN}>\widehat{BAM}\)

8 tháng 2 2020

A B C M N D

Trên tia đồi  của tia MA lấy điểm D sao cho: MA=MD

Ta có tam giác ABC cân tại A nên:\(\widehat{ACB}=\widehat{ABC}\text{ mà:}\widehat{ANM}>\widehat{ACN}\left(\text{góc ngoài}\right)\Rightarrow\widehat{ANM}>\widehat{ABN}\Rightarrow AN< AB\)

mặt khác:

\(\Delta AMN=\Delta DMB\left(c.g.c\right)\Rightarrow AN=BD< AB\Rightarrow\widehat{BAM}>\widehat{BDM};\widehat{MAN}=\widehat{BDM}< \widehat{BAM}\)

a) Xét \(\Delta ABC\) vuông tại A

\(Bc^2=Ab^2+AC^2\Rightarrow AB^2=BC^2-AC^2=10^2-8^2\text{​​}\Rightarrow AB=6cm\)

b) Xét \(\Delta ABM\)\(\Delta CDM\) có:

\(AM=CM;\widehat{AMB}=\widehat{CMD};BM=DM\)

\(\Rightarrow\) \(\Delta ABM\) = \(\Delta CDM\)

\(\Rightarrow\) \(\widehat{BAM}=\widehat{DCM}=90^ohayAC\perp CD\)

c) Có : BC + DC > BD

mà BM = 2 BD ; DC = AB

\(\Rightarrow\) DC + BC > 2BM

29 tháng 12 2017

a)

Xét \(\Delta CIA;\Delta DIB\) có :

\(IC=ID\left(gt\right)\\ \widehat{CIA}=\widehat{DIB}\left(đ^2\right)\\ IA=IB\left(gt\right)\\ \Rightarrow\Delta CIA=\Delta DIB\left(c-g-c\right)\\ \)

b)

\(\Delta CIA=\Delta DIB\\ \Rightarrow\widehat{A}=\widehat{DBI}\)

=> BD // AC

30 tháng 12 2017

a) Xét ΔCIA và ΔDIB

Có: IA=IB (gt)

\(\widehat{CIA}=\widehat{DIB}\) (2 góc đối đỉnh)

IC=ID (gt)

⇒ ΔCIA và ΔDIB (c-g-c)

b) Do ΔCIA và ΔDIB (theo câu a)

\(\widehat{ACI}=\widehat{D}\) (2 góc tương ứng)

\(\widehat{ACI}=\widehat{D}\) ở vị trí so le trong

⇒ BD // AC

c) Gọi giao điểm giữa cạnh MN và canh BC là K

Xét ΔABC và ΔAMN

Có: AC =AN (gt)

\(\widehat{BAC}=\widehat{MAN}\left(=90^O\right)\)

AB=AM (gt)

⇒ ΔABC = ΔAMN (c-g-c)

\(\widehat{AMN}=\widehat{ABC}\) (2 góc tương ứng)

\(\widehat{ANM}=\widehat{KNB}\) (Vì 2 góc đối đỉnh)

Xét ΔAMN vuông tại A

nên: \(\widehat{KBN}+\widehat{ANM}=90^O\) (Tính chất của Δ vuông)

hay: \(\widehat{KBN}+\widehat{KNB}=90^O\)

Xét ΔKNB có:

\(\widehat{KNB}+\widehat{KBN}+\widehat{NKB}=180^O\) (Định lý tổng 3 góc của 1Δ)

hay: \(\widehat{NKB}=180^O-\left(\widehat{KNB}+\widehat{KBN}\right)\)

\(\widehat{NKB}=180^O-90^O\)

\(\widehat{NKB}=90^0\)

⇒ MN ⊥ CB (ĐPCM)

I ) Cho tam giác ABC vuông tại A có AB=3cm; AC=4cma) Tính độ dài BCb) Kẻ Bm là tia p.g của \(\widehat{ABC}\left(M\in AC\right),MH⊥BC\left(H\in BC\right)\)Chứng minh \(\Delta BMA=\Delta BMH\)c) Chứng minh AM<MCd) Trên tia đối của tia AB lấy N sao cho AN=CH. Chứng minh 3 điểm N,M,H thẳng hàngII ) Cho tam giác ABC có AB=3cm; AC=4cm: BC=5cm. Kẻ đường cao AH \(\left(H\in BC\right)\)1) Chứng tỏ tam giác ABC là tam giác vuông2) Trên cạnh BC...
Đọc tiếp

I ) Cho tam giác ABC vuông tại A có AB=3cm; AC=4cm

a) Tính độ dài BC

b) Kẻ Bm là tia p.g của \(\widehat{ABC}\left(M\in AC\right),MH⊥BC\left(H\in BC\right)\)Chứng minh \(\Delta BMA=\Delta BMH\)

c) Chứng minh AM<MC

d) Trên tia đối của tia AB lấy N sao cho AN=CH. Chứng minh 3 điểm N,M,H thẳng hàng

II ) Cho tam giác ABC có AB=3cm; AC=4cm: BC=5cm. Kẻ đường cao AH \(\left(H\in BC\right)\)

1) Chứng tỏ tam giác ABC là tam giác vuông

2) Trên cạnh BC lấy D sao cho BD=BA, trên cạnh AC lấy E sao AE=AH. Gọi F là giao điểm của DE và AH, Chứng minh

a) \(DE⊥AC\)

b) \(\Delta ACF\)cân

c) \(BC+AH>AC+AB\)

III ) Cho tam giác ABC vuôg tại B có \(\widehat{BAC=60^o}\).Vẽ tia p.g AD của \(\widehat{BAC}\left(D\in BC\right)\)từ D vẽ \(DE⊥AC\left(E\in AC\right)\). Chứng minh rằng

a) \(AB=AE\)

b) \(AD⊥BE\)

c) \(DC>AB\)

                                    GIÚP MÌNK NHA!!!!!!!!!

 

0

a: Xét ΔABC có AB<AC

mà HB là hình chiếu của AB trên BC

và HC là hình chiếu của AC trên BC

nên HB<HC

=>BM<CM

b: Ta có: ΔHBM vuông tại H

nên \(\widehat{HMB}< 90^0\)

=>\(\widehat{DMH}>90^0\)

=>DH>DM