K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 6 2018

Bài 1:

Gọi M là trung điểm của BC

Vẽ BE là tia phân giác của góc B, E  thuộc AC

nối M với E

ta có: BM =CM  = 1/2.BC ( tính chất trung điểm)

AB=1/2.BC (gt)

=> BM = CM=  AB ( =1/2.BC)

Xét tam giác ABE và tam giác MBE

có: AB = MB (chứng minh trên)

góc ABE = góc MBE (gt)

BE là cạnh chung

\(\Rightarrow\Delta ABE=\Delta MBE\left(c-g-c\right)\)

=> góc BAE = góc BME = 90 độ ( 2 cạnh tương ứng)

=> góc BME = 90 độ

\(\Rightarrow BC\perp AM⋮M\)

Xét tam giác BEM vuông tại M và tam giác CEM vuông tại M

có: BM=CM(gt)

EM là cạnh chung

\(\Rightarrow\Delta BEM=\Delta CEM\left(cgv-cgv\right)\)

=> góc EBM = góc ECM ( 2 cạnh tương ứng)

mà góc EBM = góc ABE = 1/2. góc B (gt)

=> góc EBM = góc ABE = góc ECM

Xét tam giác ABC vuông tại A
có: \(\widehat{B}+\widehat{ECM}=90^0\) ( 2 góc phụ nhau)

=> góc EBM + góc ABE + góc ECM = 90 độ

=> góc ECM + góc ECM + góc ECM = 90 độ

=> 3.góc ECM = 90 độ

góc ECM = 90 độ : 3

góc ECM = 30 độ

=> góc C = 30 độ

29 tháng 4 2019

Bài 1: Áp dụng Định lý Pythagoras cho tam giác vuông ABC:AB2+AC2=BC2=>BC2=122+162=400=>BC=20(cm).

 Áp dụng Định lý:"Trong một tam giác vuông, đường trung tuyến ứng với cạnh huyền bằng nửa cạnh huyền"cho tam giác ABC:AM=\(\frac{1}{2}\)BC=\(\frac{1}{2}\).20=10cm

Do G là trọng tâm nên:AG=\(\frac{2}{3}\)AM=\(\frac{2}{3}\).10\(\approx\)6.7cm

Bài 2:

E D B C A H

a) Xét \(\Delta\)ABD và \(\Delta\)ACE:

      ADB=AEC=90

      BAC:chung

      AB=AC(\(\Delta\)ABC cân tại A)

=> \(\Delta\)ABD =\(\Delta\)ACE (Cạnh huyền-góc nhọn)

b) \(\Delta\)ABD =\(\Delta\)ACE (chứng minh trên)=>AD=AE=> \(\Delta\)AED cân tại A

c) Dễ thấy: H là trực tâm của tam giác ABC

    Mà  \(\Delta\)ABC cân tại A 

    Nên H cũng đồng thời là tam đường tròn ngoại tiếp tam giác ABC 

    Hay AH là đường trung trực của tam giác ABC

1 tháng 1 2019

Mn giải giúp mình với ạ ! Mình đang cần gấp lắm ! =.=

1 tháng 1 2019

Giải : Xét \(\Delta\)AMB và \(\Delta\)AMC

có AB = AC (gt)

    AM : chung

   MB = MC (gt)

=> \(\Delta AMB=\Delta AMC\)(c.c.c)

=> \(\widehat{CAM}=\widehat{MAB};\widehat{C}=\widehat{B};\widehat{CMA}=\widehat{AMB}\)(các cặp góc tương ứng)

Mà \(\widehat{CAM}+\widehat{MAB}=40^0\)(gt)

hay \(2.\widehat{CAM}=40^0\)

=> \(\widehat{CAM}=40^0:2\)

=> \(\widehat{CAM}=20^0\)=> \(\widehat{MAB}=20^0\)

Ta có : \(\widehat{CMA}+\widehat{BMA}=180^0\)(kề bù)

hay \(2.\widehat{CAM}=180^0\)

=> \(\widehat{CAM}=180^0:2\)

=> \(\widehat{CAM}=90^0\)

Xét \(\Delta\)AMB có \(\widehat{AMB}=90^0\)=> \(\widehat{C}+\widehat{CAM}=90^0\)(t/c của 1 tam giác)

=> \(\widehat{C}=90^0-\widehat{CAM}=90^0-20^0=70^0\)

Vì \(\widehat{C}=\widehat{B}\)=> \(\widehat{B}=70^0\)

Vậy ....

4 tháng 6 2020

a ) Ta có : 

+) \(AB< AC\) ( gt )  

 \(\Rightarrow ACB< ABC\) ( quan hệ gữa góc và cạnh đối diện )

+ ) \(ABH+BAH+AHB=180\)( tổng ba góc trong một tam giác )

\(\Rightarrow ABH+60+90=180\)

\(\Rightarrow ABH=30\)

b ) Ta có :\(AD\)là phân giác góc \(A\) ( gt ) 

\(\Rightarrow BAD=CAD=\frac{BAC}{2}=\frac{60}{2}=30\)

Mà \(ABH=30\) ( cmt ) 

\(\Rightarrow ABH=BAD\)

\(\Rightarrow ABH=BAI\)

Xét tam giác \(AIB\) và tam giác \(BHA\) có : 

\(AB\) chung 

\(AIB=BHA=90\)

\(BAI=ABH\)

\(\Rightarrow\) tam giác \(AIB\) \(=\) tam giác \(BHA\) ( g - c - g ) 

c ) Xét tam giác \(ABI\) có : 

\(ABI+BAI+AIB=180\)( tổng ba góc trong một tam giác )

\(\Rightarrow ABI+30+90=180\)

\(\Rightarrow ABI=60\)

\(\Rightarrow ABE=60\)                                 ( 1 ) 

 Xét tam giác \(ABE\) có : 

\(ABE+BAE+AEB=180\)  ( tổng ba góc trong một tam giác )

\(\Rightarrow60+60+AEB=180\)

\(\Rightarrow AEB=60\)                                  ( 2 ) 

Mà \(BAE=60\) ( gt )                         ( 3 )  

Từ ( 1 ) ; ( 2 ) ; ( 3 ) 

\(\Rightarrow\) tam giác \(ABE\) đều 

 
 
 
9 tháng 6 2020

Chứng minh câu d: 

A B C D H E I 1

Ta có: AE = AB < AC 

=> E thuộc canh AC 

\(\Delta\)ABE đều mà AD vuông BE tại I => AD là đường trung trực của DE => DB = DE  (1)

Dễ chứng minh \(\Delta\)ABD = \(\Delta\)AED 

=> ^ABD = ^AED => ^B1 = ^DEC  ( góc ngoài ) 

mà ^B1 là góc ngoài của \(\Delta\)ABC tại B => ^B> ^C 

=> ^DEC > ^C = ^ECD 

Xét trong \(\Delta\)DEC có: ^DEC > ^ECD => DC > DE (2) 

Từ (1); (2) => DC > DB 

25 tháng 5 2017

Chắc là bạn vẽ hình được!!

a)  Xét 2 tam giác AMH và NMB có:

            AM = MN  (giả thiết)

         \(\widehat{AMH}=\widehat{BMN}\) (hai góc đối đỉnh)

         BM = MH  (giả thiết)

=> \(\Delta\)AMH = \(\Delta\)NMB (c.g.c)

=> \(\widehat{MBN}=\widehat{MHA}=90^o\)(hai góc tương ứng) => \(NB⊥BC\)

b) Vì \(\Delta\)ABC cân tại A => \(\widehat{ABC}< 90^o\), mà \(\widehat{MBN}=90^o\) (cmt)

=> \(\widehat{ABC}< \widehat{MBN}\)

Xét \(\Delta ABN\), đường trung tuyến BM có \(\widehat{ABC}< \widehat{MBN}\)   => BN < BA.

c) Xét tứ giác ABNH có:  BM = MH (giả thiết)

                                     MN = AM (giả thiết)

    => tứ giác ABNH là hình bình hành (theo DHNB)

    => AM là tia phân giác \(\widehat{BAH}\)(tính chất của hình bình hành)

    => \(\widehat{BAM}=\widehat{MAH}\)

\(\Delta ABC\)cân tại A (giả thiết), AH là đường cao => \(AH⊥BC\) (1)=> AH cũng là đường trung tuyến => BH = HC.

 Xét \(\Delta BNC\)vuông tại B có, đường trung tuyến BI (giả thiết)

   => BI = IC (t/c đường trung tuyến ứng với cạnh huyền bằng nửa cạnh huyền trong tam giác vuông)

=> \(\Delta BIC\)cân tại I, mà BH = HC (cmt) => IH là đường trung tuyến của \(\Delta BIC\)cân

=> IH cũng là đường cao của \(\Delta BIC\)=> \(IH⊥BC\)(2)

Từ (1) và (2) => A, H, I thẳng hàng.

P/s: mình mất 45 phút để viết hết toàn bộ bài này!!

25 tháng 5 2017

Tự vẽ hình nha :

a) 

Xét tam giác AMH và tam giác NMB có :

AM = NM

BM = HM                           => \(\Delta AMH=\Delta NMB\)   (1)

Góc BMN = góc HMA

b) Từ 1 , ta suy ra :

AH = BN

Xét tam giác vuông AHB có AB là cạnh huyền 

=> AH < AB

Đồng thời BN < AB (Điều phải chứng minh)

c) Từ BN < AB

=> Góc BAM < góc BNA (Quan hệ góc và cạnh)

Mặt khác góc BNA = góc MAH (từ 1)

=> Góc BAM = Góc MAH

d) Nối BI lại 

Vì tam giác BNC vuông nên 

Với BI là đường trung tuyến thì 

BI = NI = IC

Xét tam giác ABI và tam giác ACI có :

BI = CI

AB = AC    => \(\Delta ABI=\Delta ACI\)

AI chung 

=> Góc BAI = Góc CAI

=> AI là đường phân giác của góc BAC  (a)

Mặt khác , tam giác ABC cân tại A và AH là đường cao 

=> AH cũng là đường phân giác  (b) 

Từ (a) và (b) 

=> A , H , I thẳng hàng

Câu 1:a) \(\Delta ABC\)có BD và CE là 2 đường trung tuyến và \(BD^2+CE^2=\frac{9}{4}BC^2\). C/m \(BD⊥CE\)tại G.b)\(\Delta ABC\)có BC=a, AC=b, AB=c. Hai đường trung tuyến AM và BN vuông góc với nhau tại G. C/m\(a^2+b^2=5c^2\)Câu 2: Cho \(\Delta ABC\)cân tại A có BC=a và cạnh bên bằng cạnh huyền của tam giác vuông cân có cạnh góc vuông bằng a. Tính độ dài đường trung tuyến BM của \(\Delta ABC\)theo a.Câu 3: Cho \(\Delta...
Đọc tiếp

Câu 1:

a) \(\Delta ABC\)có BD và CE là 2 đường trung tuyến và \(BD^2+CE^2=\frac{9}{4}BC^2\). C/m \(BD⊥CE\)tại G.

b)\(\Delta ABC\)có BC=a, AC=b, AB=c. Hai đường trung tuyến AM và BN vuông góc với nhau tại G. C/m\(a^2+b^2=5c^2\)

Câu 2: Cho \(\Delta ABC\)cân tại A có BC=a và cạnh bên bằng cạnh huyền của tam giác vuông cân có cạnh góc vuông bằng a. Tính độ dài đường trung tuyến BM của \(\Delta ABC\)theo a.

Câu 3: Cho \(\Delta ABC\), trung tuyến CD. Đường thẳng qua D và song song với BC cắt AC tại E. Đường thẳng qua D và song song với AC cắt BC tại F. Trên tia đối của tia BD lấy N sao cho BN=BD. Trên tia đối của tia CB lấy M sao cho CM=CF, gọi giao điểm của MD và AC là K. C/m N, F, K thẳng hàng.

Câu 4: Cho \(\Delta ABC\)có BC=2AB. Gọi M, I lần lượt là trung điểm của BC và BM. C/m AC=2AI và AM là tia phân giác của\(\widehat{CAI}\).

Câu 5: Cho \(\Delta ABC\),trung tuyến BM. Trên tia BM lấy 2 điểm G và K sao cho \(BG=\frac{2}{3}BM\) và G là trung điểm BK, gọi N là trung điểm KC , GN cắt CN tại O. C/m: \(GO=\frac{1}{3}BC\)  

(Bạn giải được câu nào thì giải, nhớ vẽ hình và ghi lời giải đầy đủ) 

0
21 tháng 4 2020

cm là méo gì

Hình ảnh chỉ mang tính chất minh họa thui nhé bn!!

a) Xét \(\Delta ABM\)và \(\Delta ACM\)có:

\(AB=AC\)( do tam giác ABC cân tại A)

\(\widehat{ABM}=\widehat{ACM}\)( do tam giác ABC cân tại A)

\(BM=MC\)( m là trung điểm của BC)

\(\Rightarrow\Delta ABM=\Delta ACM\left(c-g-c\right)\)

b) Ta có: \(\widehat{AMB}+\widehat{AMC}=180^o\)( 2 góc kề bù)

Mà \(\widehat{AMB}=\widehat{AMC}\)( 2 góc tương ứng của tam giác ABM và tam giác ACM)

\(\Rightarrow2\widehat{AMB}=180^o\)

\(\Rightarrow\widehat{AMB}=90^o\)

hay nói cách khác \(AM\perp BC\)

c) Ta có: \(\widehat{BAM}=\widehat{MAC}\)( 2 góc tương ứng của tam giác ABM và tam giác ACM)

và AM nằm giữa góc BAC

\(\Rightarrow AM\)là tia phân giác của  \(\widehat{BAC}\)

d) Xét \(\Delta AMB\)và \(\Delta DMC\)có:

\(AM=MD\)(gt)

\(\widehat{AMB}=\widehat{DMC}\)( 2 góc đối đỉnh)

\(BM=MC\)( M là trung điểm BC)

\(\Rightarrow\Delta AMB=\Delta DMC\left(c-g-c\right)\)

\(\Rightarrow AB=CD\)( 2 cạnh tương ứng) (1)

mà \(AB=AC\)( tam giác ABC cân tại A) (2)

Từ (1) và (2) \(\Rightarrow AC=CD\)

\(\Rightarrow\Delta ACD\)cân tại C

e) Xét \(\Delta ABC\)và \(\Delta CEA\)có:

\(AB=AC\)( tam giác ABC cân tại A)

\(\widehat{ACB}=\widehat{CAE}\)( 2 góc so le trong)

\(BC=AE\left(gt\right)\)

\(\Rightarrow\Delta ABC=\Delta CEA\left(c-g-c\right)\)

f) Gọi tia đối AE là AI

Ta có: \(\widehat{IAB}+\widehat{BAC}+\widehat{CAE}=180^O\)( I ; A; E thẳng hàng)

hay \(\widehat{MCD}+\widehat{ACE}+\widehat{ACB}=180^o\)

\(\Rightarrow D;C;E\)thẳng hàng

hok tốt!!