K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: AH=8cm

b: Xét ΔABH vuông tại H và ΔACH vuông tại H có

AB=AC

AH chung

Do đó: ΔABH=ΔACH

c: Xét ΔADH và ΔAEH có

AD=AE

\(\widehat{DAH}=\widehat{EAH}\)

AH chung

Do đó ΔADH=ΔAEH

Suy ra: HD=HE

hay ΔHDE cân tại H

d: Ta có:AD=AE

HD=HE

Do đó:AH là đường trung trực của DE

15 tháng 3 2018

a, Xét tam giác HBA vuông tại H có:

\(AB^2=AH^2+BH^2\) (định lí py ta go)

hay \(100=AH^2+36\)

=> \(AH^2=64\)

=> AH=8(cm)

b, Xét tam giác ABH và tam giác ACH có:

góc AHB=góc AHC =90 độ

AB=AC (tam giác ABC cân tại A)

AH chung

=> tam giác ABH = tam giác ACH

c,

Xét tam giác DBH và tam giác ECH có:

BD=CE (gt)

góc DBH= góc ECH (tam giác ABC Cân tại A)

BH=CH (trong tam giác cân, đường cao đồng thời là đường trung tuyến)

=> tam giác DBH=tam giác ECH

=> DH=EH( 2 cạnh tương ứng)

=> tam giác HDE cân tại H

15 tháng 3 2018

A B C H 6 10 D 6 10 E

2 tháng 2 2019

tu ve hinh : 

xet tamgiac AHB va tamgiac AHC co : goc AHB = goc AHC = 90 do AH | BC (gt)                    (2)

tamgiac ABC vuong can tai A (gt) => AB = AC (dn) va goc ABC = goc ACB = 45 (tc)    (1)

=> tamgiac AHB = tamgiac AHC (ch - gn)

=> goc BAH = goc CAH (dn) 

goc BAH + goc CAH = goc ABC  ma goc ABC = 90 do tamgiac ABC vuong can tai A (gt)

=> goc BAH = goc CAH = 45    (3)

(1)(2)(3) => tamgiac AHB va tamgiac AHC vuong can

6 tháng 9 2019

a, Xét tam giác HBA vuông tại H có:

AB2=AH2+BH2(định lí py ta go)

hay 100=AH2+36

=> AH2=64

=> AH=8(cm)

b, Xét tam giác ABH và tam giác ACH có:

góc AHB=góc AHC =90 độ

AB=AC (tam giác ABC cân tại A)

AH chung

=> tam giác ABH = tam giác ACH

c,

Xét tam giác DBH và tam giác ECH có:

BD=CE (gt)

góc DBH= góc ECH (tam giác ABC Cân tại A)

BH=CH (trong tam giác cân, đường cao đồng thời là đường trung tuyến)

=> tam giác DBH=tam giác ECH

=> DH=EH( 2 cạnh tương ứng)

=> tam giác HDE cân tại H

d) Vì AB = AC; BD = CE

mà AB - BD = AD

AC - CE = AE

=> AD = AE

Vì ΔHDE cân

=> H ∈ đường trung trực cạnh DE (1)

Xét ΔADHvàΔAEHcó

AD = AE (cmt)

AH (chung)

DH = HE (cmt)

Do đó: ΔADH=ΔAEH(c−c−c)

=> AD = AE ( hai cạnh tương ứng)

=> ΔADE cân tại A

=> A ∈ đường trung trực cạnh DE (2)

(1); (2) => A,H ∈ đường trung trực cạnh DE

=>AH là đường trung trực cạnh DE

CHÚC BẠN HỌC TỐT

bn j đó ơi cảm ơn bn đx giải cho mk nhung phần b) sai rồi nha