Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Mình có hình cho câu a) thôi nha.
a) Xét 2 \(\Delta\) \(BEA\) và \(BEM\) có:
\(BA=BM\left(gt\right)\)
\(\widehat{ABE}=\widehat{MBE}\) (vì \(BE\) là tia phân giác của \(\widehat{ABC}\))
Cạnh BE chung
=> \(\Delta BEA=\Delta BEM\left(c-g-c\right).\)
b) Theo câu a) ta có \(\Delta BEA=\Delta BEM.\)
=> \(EA=EM\) (2 cạnh tương ứng).
=> E thuộc đường trung trực của \(AM\) (1).
Vì \(BA=BM\left(gt\right)\)
=> B thuộc đường trung trực của \(AM\) (2).
Từ (1) và (2) => \(BE\) là đường trung trực của \(AM.\)
Ta có: \(\widehat{ABE}=\widehat{MBE}\) (vì \(BE\) là tia phân giác của \(\widehat{ABC}\))
=> \(\widehat{ABN}=\widehat{MBN}.\)
Xét 2 \(\Delta\) \(ABN\) và \(MBN\) có:
\(AB=MB\left(gt\right)\)
\(\widehat{ABN}=\widehat{MBN}\left(cmt\right)\)
Cạnh BN chung
=> \(\Delta ABN=\Delta MBN\left(c-g-c\right)\)
=> \(AN=MN\) (2 cạnh tương ứng).
=> N là trung điểm của \(AM.\)
Chúc bạn học tốt!
Câu a
Xét tam giác ABD và AMD có
AB = AM từ gt
Góc BAD = MAD vì AD phân giác BAM
AD chung
=> 2 tam guacs bằng nhau
Câu b
Ta có: Góc EMD bằng CMD vì góc ABD bằng AMD
Bd = bm vì 2 tam giác ở câu a bằng nhau
Góc BDE bằng MDC đối đỉnh
=> 2 tam giác bằng nhau
MK cần bạn vẽ hình để giải được câu b và c nhé
Ta có AB vuông AC; EK vuông AC Nên AB song song với EK
=> goc BAE= goc AEK (1) ( hai góc so le trong)
Lại có góc BAE= góc BEA (2) ( do tam giác ABM= tam giác EBM chứng minh ở câu a)
(1)(2)=> góc AEB = góc AEK
c.
Xét \(\Delta AEH\)và \(\Delta AEK\)
\(H=K\)
Chung \(AE\)
\(\Rightarrow\Delta AEH=\Delta AEK\left(ch-gn\right)\Rightarrow\hept{\begin{cases}AH=AK\\HAE=KAE\end{cases}}\)
Gọi giao điểm giữa HK và AE là N
Xét \(\Delta AHN\)và \(\Delta AKN\)
\(AH=AK\left(cmt\right)\)
\(HAN=KAN\left(cmt\right)\)
Chung \(AN\)
\(\Rightarrow\Delta AHN=\Delta AKN\left(c.g.c\right)\Rightarrow AMH=AMK\Rightarrow2AMH=AMK+AMH=180\Rightarrow AMH=90\)
Vậy \(AE\perp HK\)tại \(N\)
a) Xét ΔBAE vuông tại A và ΔBDE vuông tại D có: BA = BD (gt); BE cạnh chung
Vậy: ΔBAE=ΔBDE (ch, cgv)
b), c) Gọi I là giao điểm của BE và AD.
Xét ΔABI và ΔDBI có: BA = BD (gt)
\(\widehat{ABI}\) = \(\widehat{DBI}\) (2 góc tương ứng)
BI cạnh chung
Vậy ΔABI và ΔDBI (c.g.c)
\(\Rightarrow\) \(\widehat{BAD}\) = \(\widehat{BDA}\) (2 góc tương ứng)
Ta có: \(\widehat{BAC} = 90\)\(^o\) và \(\widehat{AHD} = 90\)\(^o\),
mà \(\widehat{BAD}\)= \(\widehat{BDA}\) \(\Rightarrow\)\(\widehat{HAD} = \widehat{DAK}\)
Vậy AD là tia phân giác \(\widehat{HAC}\)
Xét ΔHAD vuông tại H và ΔKAD vuông tại K có:
\(\widehat{HAD} = \widehat{KAD}\) (cmt)
AD cạnh chung
Vậy: ΔHAD = ΔKAD (ch, gn)
\(\Rightarrow\) AH = AK (2 cạnh tương ứng)
d) F đâu ra