Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bạn vẽ hình ra nhé,rồi xem cách giải của mình:
a) Xét tam giác ABC ta có : \(BC^2=AB^2+AC^2\)( Định lí Pytago)
=>\(BC^2\) =\(6^2-8^2\)=100
=> BC = \(\sqrt{100}\) =10cm
b)Xét tam giác vuông BAI và tam giác vuông BHI, ta có:
BI là cạnh huyền chung
Góc ABI= Góc HBI (gt)
=> tam giác BAI = tam giác BHI (ch-gn)
=> AB=BH (2 cạnh tương ứng )(1)
Xét tam giác AIK và tam giác HIK, ta có:
AI=HI (2 cạnh tương ứng của tam giác BAI = BHI)
Góc AIK= Góc HIC( 2 góc đối đỉnh)
Góc IAK = IHC (g-c-g)
=> AK= HC( 2 cạnh tương ứng ) (2)
Từ (1) và (2), ta => AB+AK=BH+HC
=> BK=BC
c)Vẽ IN ll BC => IN vuông góc KH
Vẽ IM ll AB => IM vuông góc IC
Ta có : tam giác BNI = Tam giác IMB (g-c-g)
=> IN=BM(2 cạnh tương ứng)
Xét tam giác BNI : IB<IN+BN( BĐT tam giác )
hay IB<BN+BM (1)
Xét tam giác vuông NIK : IK<NK( cạnh góc vuông < cạnh huyền)(2)
Xét tam giác vuông MIC : IC<MC(cạnh góc vuông< cạnh huyền)(3)
Từ (1),(2),(3). Cộng theo vế, ta có :
IB+IK+IC<BN+NK+BM+MC
IB+IK+IC<BK+BC
IB+IK+IC<2BC
IB+IK+IK<2.10=20cm ( đpcm)
mình viết thêm nha !
=> tam giác BKC cân tại B
=> BO là trung trực ứng với cạnh CK
=>BI là trung trực của CK (đpcm)
a) Mk bít làm mỗi phần a thui à
.Vì tam giác ABC vuông tại A
=> AB2 + AC2 =BC2
+) AB =6 cm
+) AC = 8 cm
=> 62 + 82 = BC2
=> 36 + 64 = BC2
=> 100 = BC2
=> BC= \(\sqrt{100}\) = 10 (cm)
Vậy BC = 10 cm
(Bạn tự vẽ hình giùm)
a/ Ta có \(\Delta ABC\)vuông tại A
=> BC2 = AB2 + AC2 (định lý Pitago)
=> BC2 = 62 + 82
=> BC2 = 36 + 64
=> BC2 = 100
=> \(BC=\sqrt{100}=10\)(cm)
b/ \(\Delta ABI\)vuông và \(\Delta HBI\)vuông có: \(\widehat{ABI}=\widehat{HBI}\)(BI là tia phân giác của \(\widehat{ABC}\))
Cạnh BI chung
=> \(\Delta ABI\)vuông = \(\Delta HBI\)vuông (ch - gn) (đpcm)
c/ Ta có \(\Delta ABI\)= \(\Delta HBI\)(cmt) => \(\hept{\begin{cases}BA=BH\\IA=IH\end{cases}}\)(hai cặp cạnh tương ứng)
=> BI cách đều hai đầu đoạn thẳng AH
=> BI là đường trung trực của AH (đpcm)
d/ \(\Delta IHC\)vuông tại H có: IH < IC (quan hệ giữa đường vuông góc và đường xiên)
và IA = IH (cm câu c)
=> IA < IC (đpcm)
e/ Mình xin chỉnh lại đề: CMR: I là trực tâm \(\Delta KBC\)
\(\Delta AIK\)và \(\Delta HIC\)có: \(\widehat{IAK}=\widehat{IHC}=90^o\)(vì AC \(\perp\)BK, KH \(\perp\)BC)
IA = IH (cm câu c)
\(\widehat{AIK}=\widehat{HIC}\)(đối đỉnh)
=> \(\Delta AIK\)= \(\Delta HIC\)(g. c. g) => AK = HC (hai cạnh tương ứng)
và AB = BH (cm câu c)
=> AK + AB = HC + BH
=> BK = BC
nên \(\Delta BKC\)cân tại B
=> Đường phân giác BI cũng là đường cao của \(\Delta BKC\)
=> BI \(\perp\)KC
Ta có: BI cắt KH tại I
Chứng minh:
Giả sử BI không cắt KH
=> BI // KH
Mà BI \(\perp\)KC (cmt)
=> KH \(\perp\)KC
và KH \(\perp\)BC (gt)
=> KC // BC
=> K, B, C thẳng hàng
Vô lý! (Vì K, B, C là ba đỉnh của một tam giác)
=> BI cắt KH tại I
=> I là trực tâm của \(\Delta KBC\)(đpcm)
Bài này lớp 7 nên mik ko biết làm.
Nhưng bạn thử zô Câu hỏi tương tự ik
Nhỡ đâu có .
Hok tốt nha Hoa
K là giao điểm của BI là đường trung trực của AB và IH??