Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: HB=HC=6cm
\(HA=\sqrt{10^2-6^2}=8\left(cm\right)\)
b: Xét ΔABM và ΔACN có
AB=AC
\(\widehat{ABM}=\widehat{ACN}\)
BM=CN
DO đo: ΔABM=ΔACN
Xét ΔBDM vuông tại D và ΔCEN vuông tại E có
BM=CN
\(\widehat{M}=\widehat{N}\)
Do đó: ΔBDM=ΔCEN
c: Xét ΔKBC có
KH là đường cao
KH là đường trung tuyến
Do đó:ΔKBC cân tại K
=>\(\widehat{KBC}=\widehat{KCB}\)
=>\(\widehat{KCB}=\widehat{DBM}\)
=>\(\widehat{KCB}=\widehat{ECN}\)
=>\(\widehat{KCB}+\widehat{BCE}=180^0\)
=>K,E,C thẳng hàng
Bài 1:
Sửa đề: Cho ΔABC vuông tại A
a: Xét ΔHAC có
M là trung điểm của HA
N là trung điểm của HC
Do đó: MN là đường trung bình
=>MN//AC
hay MN\(\perp\)AB
Xét ΔANB có
AH là đường cao
NM là đường cao
AH cắt NM tại M
DO đó:M là trực tâm của ΔANB
b: Tacó: M là trực tâm của ΔANB
nên BM\(\perp\)AN
a) Xét tam giác AHB & AHC có:
- Góc AHB = góc AHC
- AH là cạnh chung
- AB=AC (gt)
=> tam giác AHB=AHC( cạnh huyền - cạnh góc vuông)
A B C D M N
a) Xét \(\Delta ABC\) có :
\(AB=AC\left(gt\right)\)
=> \(\Delta ABC\) cân tại A
Mà có : AD là đường trung tuyến trong tam giác cân
=> AD đồng thời là đường trung trực trong tam giác cân (tính chất tam giác cân)
=> \(AD\perp BC\) (đpcm)
b) Xét \(\Delta ANC\) và \(\Delta AMB\) có :
\(\widehat{A}:chung\)
\(AB=AC\left(gt\right)\)
\(\widehat{ANC}=\widehat{AMB}\left(=90^o\right)\)
=> \(\Delta ANC\) = \(\Delta AMB\) (cạnh huyền - góc nhọn)
=> AN = AM (2 cạnh góc vuông)
Câu a
Xét tam giác ABD và AMD có
AB = AM từ gt
Góc BAD = MAD vì AD phân giác BAM
AD chung
=> 2 tam guacs bằng nhau
Câu b
Ta có: Góc EMD bằng CMD vì góc ABD bằng AMD
Bd = bm vì 2 tam giác ở câu a bằng nhau
Góc BDE bằng MDC đối đỉnh
=> 2 tam giác bằng nhau
-tự vẽ hình
a) xét tam giác ADB và tam giác AEC, ta có:
AD=AE(gt)
Góc ADB=Góc AEC(gt)
DB=CE(gt)
Vậy tam giác ADB = tam giác AEC (c-g-c)
=> AB=AC(cặp cạnh t/ứng)
=> ABC là tam giác cân tại A
b) Xét tam giác DMB và tam giác ENC, ta có:
DB=CE(gt)
Góc MDB=Góc NEC(gt)
Vậy tam giác DMB = tam giác ENC
=> BM=CN(cặp cạnh t/ứng)
=>góc MBD=góc NCE(cặp góc t/ứng)
c) ta thấy: góc MBD=góc CBI(đối đỉnh)
góc NCE=góc BCI(đối đỉnh)
=> góc CBI=góc BCI => tam giác IBC là tâm giác cân tại I
d) Xét tam giác BAI và tam giác CAI, ta có:
AB=AC(cmt)
BI=IC(tam giác IBC cân tại I)
AI là cạnh chung
Vậy tam giác BAI = tam giác CAI
=> góc BAI=IAC(cặp góc t/ứng)
=> AI là tia phân giác của BAC(đpcm)
1
a) trước tiên chứng minh\(\widehat{ABM}=\widehat{ACN}\)
rồi mới chứng minh 2 tam giác ABM và ACN bằng nhau
suy ra AM = AN
b)Đầu tiên chứng minh\(\widehat{ABH}=\widehat{ACK}\)
rồi chứng minh hai tam giác ABH và ACK bằng nhau
suy ra BH = CK
c) vì hai tam giác ABH và ACK bằng nhau (cmt)
nên AH = AK
d) ta có \(\widehat{AMB}=\widehat{ACN}\)(hai tam giác ABH và ACK bằng nhau)
nên dễ cm \(\widehat{MBH}=\widehat{NCK}\)
còn lại tự cm
e) dễ cm tam giác ABC đều
vẽ \(BH\perp AC\)
nên BH vừa là đường cao; phân giác và trung tuyến
dễ cm \(\Delta BHC=\Delta NKC\)
nên \(\widehat{BCH}=\widehat{NCK}=60^0\)
từ đó dễ cm AMN cân và OBC dều