K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 4 2021

Tam giác ABC cậu tự vẽ nhó =(

Kẻ DE//AB(E∈AC)DE//AB(E∈AC)

Vì AD là phân giác của ˆBACBAC^

⇒ˆBAD=ˆCAD⇒BAD^=CAD^

Vì DE//ABDE//AB

⇒ˆADE=ˆBAD⇒ADE^=BAD^

⇒ˆADE=ˆCAD⇒ADE^=CAD^

⇒ΔDAE⇒ΔDAEcân tại EE

⇒DE=AE⇒DE=AE

Đặt DE=AE=aDE=AE=a

Vì DE//ABDE//ABnên theo hệ quả của định lí Talet ,ta có :

DEAB=CEACDEAB=CEAC

⇒aAB=AC−AEAC⇒aAB=AC−AEAC

⇒aAB=1−aAC⇒aAB=1−aAC

⇒aAB+aAC=1⇒aAB+aAC=1

⇒1AB+1AC=1a⇒1AB+1AC=1a

Mà 1AB+1AC=1AD1AB+1AC=1AD

⇒1a=1AD⇒1a=1AD

⇒a=AD⇒a=AD

⇒DE=AE=AD⇒DE=AE=AD

⇒ΔDAE⇒ΔDAEđều

⇒ˆCAD=60o⇒CAD^=60o

⇒ˆBAC=2ˆCAD=2.60o=120o⇒BAC^=2CAD^=2.60o=120o

Vậy ˆBAC=120o

19 tháng 2 2021

vẽ đường song song 

Hình tự vẽ =)

Kẻ \(DE//AB\left(E\in AC\right)\)

Vì AD là phân giác của \(\widehat{BAC}\)

\(\Rightarrow\widehat{BAD}=\widehat{CAD}\)

Vì \(DE//AB\)

\(\Rightarrow\widehat{ADE}=\widehat{BAD}\)

\(\Rightarrow\widehat{ADE}=\widehat{CAD}\)

\(\Rightarrow\Delta DAE\)cân tại \(E\)

\(\Rightarrow DE=AE\)

Đặt \(DE=AE=a\)

Vì \(DE//AB\)nên theo hệ quả của định lí Talet ,ta có :

\(\frac{DE}{AB}=\frac{CE}{AC}\)

\(\Rightarrow\frac{a}{AB}=\frac{AC-AE}{AC}\)

\(\Rightarrow\frac{a}{AB}=1-\frac{a}{AC}\)

\(\Rightarrow\frac{a}{AB}+\frac{a}{AC}=1\)

\(\Rightarrow\frac{1}{AB}+\frac{1}{AC}=\frac{1}{a}\)

Mà \(\frac{1}{AB}+\frac{1}{AC}=\frac{1}{AD}\)

\(\Rightarrow\frac{1}{a}=\frac{1}{AD}\)

\(\Rightarrow a=AD\)

\(\Rightarrow DE=AE=AD\)

\(\Rightarrow\Delta DAE\)đều

\(\Rightarrow\widehat{CAD}=60^o\)

\(\Rightarrow\widehat{BAC}=2\widehat{CAD}=2.60^o=120^o\)

Vậy \(\widehat{BAC}=120^o\)

A B C D E H

ta có AD là phân giác góc BAC thì \(\widehat{BAD}=\widehat{EAD}=\frac{60^0}{2}=30^0\)

hình vẽ ko đc đẹp thông cảm

ta kẻ \(DE\\ AB;E\in AC\)

\(\Rightarrow\frac{EC}{AC}=\frac{DE}{AB}\)(hệ quả của đlý Talets nhé)

\(DE\\ AB\Rightarrow\widehat{AED}=180^0-\widehat{BAC}=180^0-60^0=120^0\)

TỪ ĐÓ TA TÍNH ĐC GÓC EAD=300 \(\Rightarrow\Delta AED\)cân tại E

\(\Rightarrow AE=ED\)

\(\Rightarrow\frac{EC}{AC}=\frac{AE}{AB}\)(thay vào cái tỉ số ở trên nhé)

\(\Rightarrow\frac{EC}{AC}=\frac{AC-AE}{AC}\)

\(\Rightarrow\frac{EC}{AC}=1-\frac{AE}{AC}\)(1)

ta kẻ:\(EH\perp AD\left(H\in AD\right)\)từ đó EH sẽ là đường cao của tam giác AED cân tại E

\(\Rightarrow AH=HE\)(TC)

\(\Delta AHE\) VUÔNG TẠI H,theo định lý Pytago TA CÓ:

\(AH^2+HE^2=AE^2\)

TA có tính chất sau:trong tam giác vuông có 1 góc bằng 30 độ thì cạnh đối diện với góc 30 độ bằng nửa cạnh huyền

\(\Rightarrow AE=2HE\)(áp dụng vào tam giác AHE)

\(\Rightarrow AH^2+HE^2=4HE^2\)

\(\Rightarrow AH^2=3HE^2\)

MÀ  \(AH+HE=AD;AH=AE\Rightarrow2AH=AD\Rightarrow4AH^2=AD^2\)

\(\Rightarrow4.AH^2=12HE^2\Rightarrow AD^2=3.\left(4.HE^2\right)\)

\(\Rightarrow AD^2=3.AE^2\)(DO HE=2AE)

\(\Rightarrow AD=\sqrt{3}AE\)(do cạnh của tam giác luôn lớn hơn 0)

ta thày vào (1),có:​

\(\frac{AE}{AB}=1-\frac{AE}{AC}\Rightarrow\frac{\sqrt{3}AE}{AB}=\sqrt{3}-\frac{\sqrt{3}AE}{AC}\)

\(\Rightarrow\frac{AD}{AB}=\sqrt{3}-\frac{AD}{AC}\)
\(\Rightarrow\frac{AD}{AB}+\frac{AD}{AC}=\sqrt{3}\)

\(\Rightarrow AD.\left(\frac{1}{AB}+\frac{1}{AC}\right)=\sqrt{3}\)

\(\Rightarrow\frac{1}{AB}+\frac{1}{AC}=\frac{\sqrt{3}}{AD}\)(ĐPCM)

20 tháng 4 2019

A A B B C H D

Từ D kẻ DH // AC 

Do DH // AC : \(\Rightarrow\) \(\widehat{D_1}=\widehat{A_2}=60^0\)

Vì AD là đường phân giác \(\widehat{BAC}\):

\(\Rightarrow\)\(\widehat{A_1}=\widehat{A_2}=60^0\)

\(\Rightarrow\)\(\widehat{D_1}=\widehat{A_1}=60^0\)

\(\Rightarrow\) \(\Delta AH\text{D}\) là tam giác đều

\(\Rightarrow\)\(AH=H\text{D}=A\text{D}\)

Do DH //  AH :

\(\Rightarrow\)\(\frac{BH}{AB}=\frac{H\text{D}}{AC}\)

       \(\frac{AB-AH}{AB}=\frac{H\text{D}}{AC}\)

 \(\frac{AB}{AB}-\frac{AH}{AB}=\frac{H\text{D}}{AC}\)

\(1-\frac{AH}{AB}=\frac{H\text{D}}{AC}\)

\(1=\frac{H\text{D}}{AC}+\frac{AH}{AB}\)

\(1=\frac{A\text{D}}{AC}+\frac{A\text{D}}{AB}\) ( VÌ AH = HD = AD )

\(1=A\text{D}.\left(\frac{1}{AC}+\frac{1}{AB}\right)\)

\(\frac{1}{A\text{D}}=\frac{1}{AC}+\frac{1}{AB}\)

\(\Rightarrow\)\(\frac{1}{AB}+\frac{1}{AC}=\frac{1}{A\text{D}}\)( ĐPCM )

1) Cho \(\Delta MNP\)(MN<MP), MI là đường phân giác của \(\Delta MNP\)a. So sánh IN và IPb. Trên tia đối của tia IM lấy điểm A. SO sánh NA và PA.2) Cho \(\Delta ABC\)vuông ở A (AB<AC) có AH là đường cao. So sánh AH+BC và AB+AC.3) CHo \(\Delta ABC\)có góc A=80 độ, góc B=70 độ, AD là đường phân giác của \(\Delta ABC\)a. CM: CD>ABb. Vẽ BH vuông góc với AD (H thuộc AD). CMR: CD=2BH4) CHo \(\Delta ABC\)nhọn, các đường trung...
Đọc tiếp

1) Cho \(\Delta MNP\)(MN<MP), MI là đường phân giác của \(\Delta MNP\)

a. So sánh IN và IP

b. Trên tia đối của tia IM lấy điểm A. SO sánh NA và PA.

2) Cho \(\Delta ABC\)vuông ở A (AB<AC) có AH là đường cao. So sánh AH+BC và AB+AC.

3) CHo \(\Delta ABC\)có góc A=80 độ, góc B=70 độ, AD là đường phân giác của \(\Delta ABC\)

a. CM: CD>AB

b. Vẽ BH vuông góc với AD (H thuộc AD). CMR: CD=2BH

4) CHo \(\Delta ABC\)nhọn, các đường trung tuyến BD, CE vuông góc với nhau. Giả sử AB=6cm, AC=8cm. Tính độ dài BC?

5) Cho \(\Delta ABC\)có đường cao AH (H nằm giữa B và C). CMR

a. Nếu \(\frac{AH}{BH}=\frac{CH}{AH}\)thì \(\Delta ABC\)vuông

b. Nếu \(\frac{AB}{BH}=\frac{BC}{AB}\)thì \(\Delta ABC\)vuông

c. Nếu \(\frac{AB}{AH}=\frac{BC}{AC}\)thì \(\Delta ABC\)vuông

d. Nếu \(\frac{1}{AH^2}=\frac{1}{AB^2}=\frac{1}{AC^2}\)thì \(\Delta ABC\)vuông

0