K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 2 2023

a)

xét tam giác EHB và tam giác DHC có

góc BEC = góc CDH = 90 độ

góc EHB = góc DHC (hai góc đối đỉnh)

=> tam giác EHB đồng dạng tam giác DHC (g-g)

b)

vì tam giác EHB đồng dạng tam giác DHC (cmt)

=> `(HB)/(HC)=(HE)/(HD)` (tính chất)`

=> `HB*HD=HE*HC`

26 tháng 2 2023

Bạn tự vẽ hình nhé

mik dùng máy tính nên ko chụp dc

12 tháng 8 2020

B C A E D F H

Bài làm:

a) Δ EHB ~ Δ DHC (g.g) vì:

\(\widehat{EHB}=\widehat{DHC}\) (đối đỉnh)

\(\widehat{BEH}=\widehat{CDH}=90^0\)

=> đpcm

b) Theo phần a, 2 tam giác đồng dạng

=> \(\frac{HE}{HB}=\frac{HD}{HC}\)

Δ HED ~ Δ HBC (c.g.c) vì:

\(\frac{HE}{HB}=\frac{HD}{HC}\) (chứng minh trên)

\(\widehat{EHD}=\widehat{BHC}\) (đối đỉnh)

=> đpcm

c) Δ ABD ~ Δ ACE (g.g) vì:

\(\widehat{ADB}=\widehat{AEC}=90^0\)

\(\widehat{A}\) chung

=> \(\frac{AD}{AE}=\frac{AB}{AC}\)

Δ ADE ~ Δ ABC (c.g.c) vì:

\(\frac{AD}{AE}=\frac{AB}{AC}\) (chứng minh trên)

\(\widehat{A}\) chung

=> đpcm

d) Gọi F là giao của AH với BC

Δ BHF ~ Δ BCD (g.g) vì:

\(\widehat{BFH}=\widehat{BDC}=90^0\)

\(\widehat{B}\) chung

=> \(\frac{BF}{BH}=\frac{BD}{BC}\Rightarrow BD.BH=BF.BC\left(1\right)\)

Tương tự ta chứng minh được:

\(CH.CE=FC.BC\left(2\right)\)

Cộng vế (1) và (2) lại ta được:

\(BD.BH+CH.CE=\left(BF+FC\right)BC=BC.BC=BC^2\)

=> đpcm

9 tháng 5 2017

Đề kiểm tra HK2 của bạn đây ak lớp 8 ak

9 tháng 5 2017

ukm

a, xét \(\Delta BAD\)\(\Delta CAE\)có:

         \(\widehat{BAD}=\widehat{CAE}\)(góc chung)

        \(\widehat{BDA}=\widehat{CEA}\left(90^0\right)\)

\(\Rightarrow\Delta BAD~\Delta CAE\left(g.g\right)\)

\(b,\)xét \(\Delta EHB\)\(\Delta DHC\)có:

          \(\widehat{EHB}=\widehat{DHC}\)(đối đỉnh)

          \(\widehat{HEB}=\widehat{HDC}\left(=90^0\right)\)

\(\Rightarrow\Delta EHB~\Delta DHC\left(g.g\right)\)

\(\Rightarrow\frac{HE}{HD}=\frac{HB}{HC}\Rightarrow HE.HC=HB.HD\)

c,\(HE.HC=HB.HD\Rightarrow\frac{HE}{HB}=\frac{HD}{HC}\)

xét\(\Delta EHD\)\(\Delta BHC\)

        \(\frac{HE}{HB}=\frac{HD}{HC}\left(cmt\right)\)

         \(\widehat{EHD}=\widehat{BHC}\)(đối đỉnh)

\(\Rightarrow\Delta EHD~\Delta BHC\left(c.g.c\right)\)

7 tháng 5 2019

2/Xét ∆ABD và ∆ACE có:

chung

∆ABD ∽ ∆ACE (g.g)

b.

Xét ∆HDC và ∆HEB có:

(vì BD AC, CE AB)

(đ đ)

∆HDC ∽ ∆HEB(g.g)

\(\frac{HD}{HE}=\frac{HC}{HB}< =>HD.HB=HE.HC\)

c.Vì H là giao điểm của 2 đường cao CE,BD

H là trực tâm của ∆ABC

AH BC tại F

Xét ∆CIF và ∆CFA có:

: chung

(vì AF BC, FI AC)

∆CIF ∽ ∆CFA (g.g)

Bạn tự vẽ hình nha