Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
B C A E D F H
Bài làm:
a) Δ EHB ~ Δ DHC (g.g) vì:
+ \(\widehat{EHB}=\widehat{DHC}\) (đối đỉnh)
+ \(\widehat{BEH}=\widehat{CDH}=90^0\)
=> đpcm
b) Theo phần a, 2 tam giác đồng dạng
=> \(\frac{HE}{HB}=\frac{HD}{HC}\)
Δ HED ~ Δ HBC (c.g.c) vì:
+ \(\frac{HE}{HB}=\frac{HD}{HC}\) (chứng minh trên)
+ \(\widehat{EHD}=\widehat{BHC}\) (đối đỉnh)
=> đpcm
c) Δ ABD ~ Δ ACE (g.g) vì:
+ \(\widehat{ADB}=\widehat{AEC}=90^0\)
+ \(\widehat{A}\) chung
=> \(\frac{AD}{AE}=\frac{AB}{AC}\)
Δ ADE ~ Δ ABC (c.g.c) vì:
+ \(\frac{AD}{AE}=\frac{AB}{AC}\) (chứng minh trên)
+ \(\widehat{A}\) chung
=> đpcm
d) Gọi F là giao của AH với BC
Δ BHF ~ Δ BCD (g.g) vì:
+ \(\widehat{BFH}=\widehat{BDC}=90^0\)
+ \(\widehat{B}\) chung
=> \(\frac{BF}{BH}=\frac{BD}{BC}\Rightarrow BD.BH=BF.BC\left(1\right)\)
Tương tự ta chứng minh được:
\(CH.CE=FC.BC\left(2\right)\)
Cộng vế (1) và (2) lại ta được:
\(BD.BH+CH.CE=\left(BF+FC\right)BC=BC.BC=BC^2\)
=> đpcm
a, xét \(\Delta BAD\)và\(\Delta CAE\)có:
\(\widehat{BAD}=\widehat{CAE}\)(góc chung)
\(\widehat{BDA}=\widehat{CEA}\left(90^0\right)\)
\(\Rightarrow\Delta BAD~\Delta CAE\left(g.g\right)\)
\(b,\)xét \(\Delta EHB\)và\(\Delta DHC\)có:
\(\widehat{EHB}=\widehat{DHC}\)(đối đỉnh)
\(\widehat{HEB}=\widehat{HDC}\left(=90^0\right)\)
\(\Rightarrow\Delta EHB~\Delta DHC\left(g.g\right)\)
\(\Rightarrow\frac{HE}{HD}=\frac{HB}{HC}\Rightarrow HE.HC=HB.HD\)
c,\(HE.HC=HB.HD\Rightarrow\frac{HE}{HB}=\frac{HD}{HC}\)
xét\(\Delta EHD\)và\(\Delta BHC\)có
\(\frac{HE}{HB}=\frac{HD}{HC}\left(cmt\right)\)
\(\widehat{EHD}=\widehat{BHC}\)(đối đỉnh)
\(\Rightarrow\Delta EHD~\Delta BHC\left(c.g.c\right)\)
2/Xét ∆ABD và ∆ACE có:
chung
∆ABD ∽ ∆ACE (g.g)
b.
Xét ∆HDC và ∆HEB có:
(vì BD AC, CE AB)
(đ đ)
∆HDC ∽ ∆HEB(g.g)
\(\frac{HD}{HE}=\frac{HC}{HB}< =>HD.HB=HE.HC\)
c.Vì H là giao điểm của 2 đường cao CE,BDH là trực tâm của ∆ABC
AH BC tại F
Xét ∆CIF và ∆CFA có:
: chung
(vì AF BC, FI AC)
∆CIF ∽ ∆CFA (g.g)
Bạn tự vẽ hình nha
a)
xét tam giác EHB và tam giác DHC có
góc BEC = góc CDH = 90 độ
góc EHB = góc DHC (hai góc đối đỉnh)
=> tam giác EHB đồng dạng tam giác DHC (g-g)
b)
vì tam giác EHB đồng dạng tam giác DHC (cmt)
=> `(HB)/(HC)=(HE)/(HD)` (tính chất)`
=> `HB*HD=HE*HC`
Bạn tự vẽ hình nhé
mik dùng máy tính nên ko chụp dc