Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A B C D 60^o
a) Cmr:
vì h là hình thang cân nên:
\(\hept{\begin{cases}\widehat{A}=\widehat{B}\\\widehat{C}=\widehat{D}\end{cases}=60^o}\)
=> MDBE là đồng vị
My#AC
=> \(\overline{C}=\overline{MAB}\)(đồng vị)
m : C = 60 độ
=>MEB = 60o
mà B có 60 o
Nên cmr rằng các tứ giác MDAF, MDBE và MECF là những hình thang cân.
b) \(\widehat{MEB}vs\widehat{BEC}\)(bù nhau)
Nên: NEB + DME = 80 o => DME =320 o
Vậy DMF > DME < EMF
c,d chịu :(
Bạn kia là gì mà mình chả hiểu, hình như nhầm đề nhỉ?
A B C M x D y E F z
1/ *Chứng minh tứ giác MDAF cân:
Do MD // BC nên ^ABC = ^MDA = 60o(1). Mặt khác ^BAC = 60o nên ^DAC = 60o (2)
Từ (1) và (2) suy ra ^MDA = ^DAC (*)
Mà MF // AB -> MF //AD (**)
Từ (*) và (**) suy ra đpcm.
Các hình còn lại tương tự.
2/ Còn lại chịu.
Có MA+MB > AB
MB+MC > BC Bất đẳng thức trong tam giác
MA + MC > AC
Cộng vế với vết của 3 bất đẳng thức trên ta có2MA + 2MB + 2MC > AB + BC + AC = 3aMA + MB + MC > 3a/2 > a√3/2 (đfcm)
A B C M
Xét \(\Delta MBC\)ta có:
MB+MC>BC (theo bất đẳng thức tam giác)
Mà tam giác ABC đều nên AB=BC
suy ra MB+MC>AB
Ta lại có AB>MA nên MB+MC>MA
M D F E A B C
Kẻ MD // BC, MF // AC, ME // AB \(\left(D\in AB,F\in BC,E\in AC\right)\)
Ta có:
\(\widehat{DBF}=\widehat{ACB}\) ( \(\Delta ABC\) đều)
\(\widehat{MFB}=\widehat{ACB}\) ( 2 góc đồng vị và MF // AC)
\(\Rightarrow\)\(\widehat{DBF}=\widehat{MFB}\)
Mà MD // BF
Nên tứ giác DMFB là hình thang cân
\(\Rightarrow\)\(DF=MB\) \(\left(1\right)\)
Chứng minh tương tự ta có:
\(EF=MC\) \(\left(2\right)\)
\(DE=MA\) \(\left(3\right)\)
Xét \(\Delta DEF\) theo bất đẳng thức trong tam giác ta có:
\(DF+EF>DE\) \(\left(4\right)\)
Từ (1), (2), (3) và (4) suy ra
\(MB+MC>MA\left(đpcm\right)\)