Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gợi ý :
Tam giác BMA = tam giác CMD ( c. g. c )
=> AB = CD ; góc BAM = góc MDC
ta có : AB < AC
=> CD < AC
=> góc CAD < góc CDA ( qh ... )
hay góc CAM < góc CDM
mà góc CDM = góc BAM
=> Góc CAM < Góc BAM
a: Xét tứ giác ABDC có
M là trung điểm của AD
M là trung điểm của BC
Do đó: ABDC là hình bình hành
Suy ra: BA//DC
=>\(\widehat{BAM}=\widehat{CDM}\)
b: Ta có: \(\widehat{BAM}=\widehat{CDM}\)
mà \(\widehat{CDM}>\widehat{MAC}\)(DA>DC)
nên \(\widehat{BAM}>\widehat{MAC}\)
A B C M D H E
a) Xét \(\Delta\)BAM và \(\Delta\)CDM có:
MB=MC
^AMB=^DMC => \(\Delta\)BAM=\(\Delta\)CDM (c.g.c)
MA=MD
=> AB=DC (2 cạnh tương ứng). Mà AB<AC =>DC<AC => ^DAC<^ADC (Qhệ góc và cạnh đối diện)
^ADC=^BAM (2 góc tương ứng) => ^BAM>^CAM hay ^MAB>^MAC (đpcm)
b) AH \(⊥\)BC , AC>AB => HC>HB (Qhệ đường xiên hình chiếu)
E nằm giữa A và H => EH\(⊥\)BC, HC>HB => EC>EB.
(tự vẽ hình )
câu 4:
a) có AB2 + AC2 = 225
BC2 = 225
Pytago đảo => \(\Delta ABC\)vuông tại A
b) Xét \(\Delta MAB\)và \(\Delta MDC\)
MA = MD (gt)
BM = BC ( do M là trung điểm của BC )
\(\widehat{AMB}=\widehat{CMD}\)( hai góc đối đỉnh )
=> \(\Delta MAB\)= \(\Delta MDC\) (cgc)
c) vì \(\Delta MAB\)= \(\Delta MDC\)
=> \(\hept{\begin{cases}AB=DC\\\widehat{MAB}=\widehat{MDC}\end{cases}}\)
=> AB// DC
lại có AB \(\perp\)AC => DC \(\perp\)AC => \(\Delta KCD\)vuông tại C
Xét \(\Delta\) vuông ABK và \(\Delta\)vuông KCD:
AB =CD (cmt)
AK = KC ( do k là trung điểm của AC )
=> \(\Delta\)vuông AKB = \(\Delta\)vuông CKD (cc)
=> KB = KD
d. do KB = KD => \(\Delta KBD\)cân tại K
=> \(\widehat{KBD}=\widehat{KDB}\)(1)
có \(\Delta ADC\)vuông tại C => \(AD=\sqrt{AC^2+DC^2}=15\)
=> MD = 7.5
mà MB = 7.5
=> MB = MD
=> \(\Delta MBD\)cân tại M
=> \(\widehat{MBD}=\widehat{MDB}\)(2)
Từ (1) và (2) => \(\widehat{KBD}-\widehat{MBD}=\widehat{KDB}-\widehat{MDB}\)hay \(\widehat{KBM}=\widehat{KDM}\)
Xét \(\Delta KBI\)và \(\Delta KDN\)có:
\(\widehat{KBI}=\widehat{KDN}\)(cmt)
\(\widehat{KBD}\)chung
KD =KB (cmt)
=> \(\Delta KBI\)= \(\Delta KDN\)(gcg)
=> KN =KI
=. đpcm
câu 5:
a) Xét \(\Delta ABM\)và \(\Delta MDC\):
MA=MD(gt)
MB=MC (M là trung điểm của BC)
\(\widehat{BMA}=\widehat{DMC}\)( đối đỉnh )
=> \(\Delta BMA=\Delta CMD\)(cgc)
b) Xét \(\Delta\)vuông ABC
có AM là đường trung tuyến của tam giác
=> \(AM=\frac{1}{2}BC\)mà \(BM=MC=\frac{1}{2}BC\)(do M là trung điểm của BC )
=> AM = BM = MC
có MA =MD => AM = MD =MB =MC
=> BM +MC = AM +MD hay BC =AD
Xét \(\Delta BAC\)và \(\Delta DCA\)
AB =DC
AC chung
BC =DC
=> \(\Delta BAC\)= \(\Delta DCA\)(ccc)
c. Xét \(\Delta ABM\)
BM=AM
\(\widehat{ABM}\)= 600
=> đpcm
cho mk sửa xíu"câu c) á,trên nửa... nha chứ bên trên là mk viết sai á"!xl mí bn nha!
Hình bạn tự vẽ
a) Xét tam giác BMA và tam giác CMD , có:
BM=MC ( vì M là trung điểm của BC)
góc BMA = góc CMD( 2 góc đối đỉnh)
AM=MB ( giả thiết )
=> Tam giác BMA = tam giác CMD ( c-g-c )
=> góc BAM = góc CDM ( 2 góc tương ứng )(đpcm)
b) Xét tam giác BMD và tam giác CMA , có:
BM=MC ( vì M là trung điểm của BC)
góc BMD = góc CMA( 2 góc đối đỉnh)
AM=MB ( giả thiết )
=> Tam giác BMD = tam giác CMA ( c-g-c )
=> BD = AC ( 2 cạnh tương ứng ) ( đpcm )
=> góc BDM = góc MAC ( 2 góc tương ứng )
Mà góc BMD và góc MAC ở vị trí sole trong
=> AC // BD ( dấu hiệu nhận biết 2 đường thẳng song song) ( đpcm )
Còn lại dễ bạn tự làm nha mỏi tay quá
Tự vẽ hình đc ko bạn
VÌ MA=MD ,MB=MA ,GOC AMB=GOC CMD
\(\Rightarrow\Delta AMB=\Delta DMC\left(c.g.c\right)\)
SUY RA GÓC BAM=GÓC MDC VS AB=CD
MA AB<AC SUY RA DC<AC
SUY RA GÓC CAM<GÓC CDM
SUY RA GÓC BAM>GÓC CAM