Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Theo đề ra ta có:
AB= 6 (cm) => \(AB^2=6^2=36\)
AC= 8 (cm) => \(AC^2=8^2=64\)
BC=10(cm) => \(BC^2=10^2=100\)
Ta thấy: 100=36+64 => \(BC^2=AB^2+AC^2\) => Tam giác ABC vuông tại A ( Theo định lý Py-ta-go đảo)
b) Xét tam giác vuông BAD và tam giác vuông BED, ta có:
\(\widehat{B_1}=\widehat{B_2}\)(Do BD là tia phân giác của góc B)
Chung BD
=> \(\Delta BAD=\Delta BED\left(ch-gn\right)\)
=> DE=DA( cạnh tương ứng)
c) Xét tam giác EDC và tam giác ADF, có:
\(\widehat{CED}=\widehat{FAD}\left(=90^o\right)\)
DE=DA
\(\widehat{D_1}=\widehat{D_2}\)( góc đối đỉnh)
=> \(\Delta ADF=\Delta EDC\left(g.c.g\right)\)
=> DF=DC( cạnh tương ứng)
*) Xét trong tam giác vuông EDC thì góc vuông E là góc lớn nhất =.> CD là cạnh lớn nhất trong tam giác đó => DC>DE
Mà DC=DF => DF>DE
d)
Do tam giác BED = tam giác BAD => BE=BA (1)
Tam giác EDC= tam giác ADF => EC=AF(2)
Từ 1 và 2 => BE+EC=BA+AF=> BC=BF.
Xét tam giác BCK và tam giác BFK,có:
BF=BC
\(\widehat{B_1}=\widehat{B_2}\)
Chung BK
=> \(\Delta BFK=\Delta BCK\left(c.g.c\right)\) => CK=KF (*)
và \(\widehat{BKC}=\widehat{BKF}\) mà 2 góc này kề bù với nhau nên mỗi góc có số đo là \(90^o\)
Vậy KB hay là BD là đường trung trực của đoạn thẳng FC.
P/S: ở câu c nếu không muốn viết dài dòng có thể viết : Do BC=BF nên tam giác BCF cân tại B mà BK là tia phân giác góc B nên BK hay BD là đường trung trực của đoạn thẳng FC
Huỳnh Châu Giang ơi ....... không biết nhưng cậu xem lại hình đi ..... thật sự nó là đường trung trực mà à đường cao cũng được ....... do đó là tam giác cân nên đường cao và đường trung trực hay là đường trung tuyến ứng với cạnh đối diện của cái góc mà không giống 2 góc kia ý ( không biết diễn giải =.=)
Câu C mình ghi thiếu: Chứng minh \(\Delta\) ADK cân từ đó chứng minh D là trung điểm của EK
hình pn tự vẽ nka
a) Xét \(\Delta ABD\) và \(\Delta EBD\)có
BA = BE (giả thiết)
góc \(ABD=EBD\) ( phân giác góc B)
BD cạnh chung
\(\Rightarrow\Delta ABD=\Delta EBD\left(c-g-c\right)\)
b) ( hình như đề câu b sai hay s ó pn)
A B C 3 5 4 D E F 1 2 3 4 1 2 1 2 1 2
a) Ta có : \(BC^2\)= \(5^2\)= 25 cm
\(AB^2\)+ \(AC^2\)= \(3^2\)+\(4^2\)= 25 cm
Áp dụng định lí Py-ta-go đảo ta có :
\(BC^2\)= \(AB^2\)+\(AC^2\)( 25 = 25)
Vậy \(\Delta\)ABC là \(\Delta\)vuông và vuông tại A
b) Xét \(\Delta\)BAD và \(\Delta\)BED có
\(\widehat{B_1}\)= \(\widehat{B_2}\)( do BD là tia phân giác \(\widehat{B}\))
AB = BE ( GT )
BD cạnh chung
Vậy \(\Delta\)BAD = \(\Delta\)BED ( c-g-c )
Câu hỏi của Vy Hà Khánh - Toán lớp 7 - Học toán với OnlineMath
Em tham khảo nhé!
Bài làm của bạn đây!!