\(\Delta ABC\) có góc A= 80o. Lấy điểm O nằm trong \(...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 6 2017

A B C O D

Trên nửa mặt phẳng bờ BC chứa điểm A, dựng tam giác đều BCD, nối D với A.

\(\Delta\)BCD đều \(\Rightarrow\)BC=BD=DC và ^BDC=^DBC=^DCB=600.

\(\Delta\)ABC cân tại A \(\Rightarrow\)AB=AC.  Mà ^BAC=800 \(\Rightarrow\)^ABC=^ACB=500.

Xét \(\Delta\)BAD và \(\Delta\)CAD có:

AB=AC

AD chung    \(\Rightarrow\)\(\Delta\)BAD=\(\Delta\)CAD (c.c.c)

BD=CD 

\(\Rightarrow\)^BDA=^CDA (2 góc tương ứng) \(\Rightarrow\)^BDA=^CDA=^BDC/2=600/2=300.

Mà ^CBO=300 \(\Rightarrow\)^CDA=^CBO=300. Lại có: ^ACD=^DCB-^ACB=600-500=100\(\Rightarrow\)^ACD=^OCB=100.

Xét \(\Delta\)CAD và \(\Delta\)COB có:

^CDA=^CBO

DC=BC              \(\Rightarrow\)\(\Delta\)CAD=\(\Delta\)COB (g.c.g) \(\Rightarrow CA=CO\)(2 cạnh tương ứng)

^ACD=^OCB

\(\Delta COA\)cân tại C (đpcm)

7 tháng 1 2018

B C A M O

\(\Delta ABC\)cân tại A, \(\widehat{A}=80^o\)suy ra : \(\widehat{B}=\widehat{C}=50^o\)

Vẽ tam giác BCM đều ( M và A thuộc cùng một nửa mặt phẳng bờ BC ) 

\(\widehat{MCA}=60^o-50^o=10^o\)

\(\Delta AMB=\Delta AMC\)( c.c.c )

suy ra : \(\widehat{AMB}=\widehat{AMC}=60^o:2=30^o\)

\(\Delta OBC=\Delta AMC\)( g.c.g ) suy ra CO = CA do đó \(\Delta COA\)cân

LƯU Ý: MÌNH KHÔNG BIẾT VẼ HÌNH NÊN BẠN VẼ NHÉ 

Bài 1: DỰNG TAM GIÁC ĐỀU MBC ( M;A nằm trên cùng một nửa mặt phẳng bờ BC)

Xét tam giác MAB và tam giác MAC 

     MB=MC(tam giác MBC đều)

     Chung MA

     AB=AC(tam giác ABC cân tại A)

=> Tam giác MAB= tam giác MBC => góc BMA= góc CMA

=> góc BMA=30 độ

Xét tam giác BMA và tam giác BCD 

     góc BMA=BCD(=30)

     BM=BC(tam giác MBC đều)

     goc MBA=CBD(=10) (CHỖ NÀY BẠN KHÔNG HIỂU HỎI MK NHÉ )

=> tam giac BMA=BCD=>AB=DB=> tam giac BAD cân tại B . Lại có DBM=40

=> BAD=(180-40)/2=70

     

Bài 2: Dựng tam giác đều BCI( I;A cùng phía so với BC)

Xét tam giác BIA và tam giác CIA

     AB=AC ( ABC cân tại A)

     ABI=ACI(=10)

     BI=CI(do BIC đều)

=> tam giác BIA=CIA =>góc BAI=CAI=40/2=20

Tương tự ta chứng minh được tam giác ABI = tam giác DBC(c.g.c) ( NẾU HỎI MK SẼ NHẮN TRONG PHÂN CHAT)

Do đó BAI=BDC hay BDC=20

16 tháng 12 2018

Cái này mk áp dụng lp 8 nha !

Xét tam giác ABC có : AB=DB(GIẢ THIẾT)

                                    AE=EC(GIẢ THIẾT)

               =) DE là đường trung bình của tam giác ABC 

              =) DE = 1/2 BC

Đến chỗ này mk sửa cho bn phần b nha ! phải là cm tam giác DBF = 1/2 tam giác ABC nha ( mk nghĩ vậy )

=) BF=1/2BC =) FC = ED ( cùng bằng 1/2 BC ) 

Xét tam giác ABC có :

            FC = ED(CMT)

           BF = FC (Vì FC =1/2 AB nên  F là trung điểm của BC )

Nên ta có DF là đường trung bình tam giác ABC =) DF song song vs AC .

Chúc bn học tốt nha !

7 tháng 11 2016

1/ Ta có: tam giác ABC = tam giác DEF

=> góc A = góc D

góc B = góc E

góc C = góc F

Ta có: góc A + góc B + góc C = 1800

1300 + góc C = 1800

góc C = 1800-1300 = 500

Ta có: góc A + góc B = 1300

góc A + 550 = 1300

góc A = 1300 - 550 =750

Vậy góc A = góc D = 750

góc B = góc E = 550

góc C = góc F = 500

2/ Ta có: tam giác DEF = tam giác MNP

=> DE = MN

EF = NP

FD = PM

Ta có: EF + FD = 10 cm

Mà NP - MP = EF - FD = 2 cm

EF = (10 + 2) : 2 = 6 (cm)

FD = (10 - 2) : 2 = 4 (cm)

Vậy DE = MN = 3 cm

EF = NP = 6 cm

FD = MP = 4 cm

7 tháng 11 2016

1) Ta có: ( \(\widehat{A}\) + \(\widehat{B}\)) + \(\widehat{C}\) = 180o

hay 130o + \(\widehat{C}\) = 180o

\(\Rightarrow\) \(\widehat{C}\) = 180o - 130o = 50o

Vì ΔABC = ΔDEF nên ta có:

\(\widehat{C}\) = \(\widehat{F}\) = 50o

\(\widehat{E}\) = \(\widehat{B}\) = 55o

Ta có: \(\widehat{A}\) + \(\widehat{B}\) = 130o hay \(\widehat{A}\) + 55o = 130o

\(\Rightarrow\) \(\widehat{A}\) = 130o - 55o = 75o

\(\Leftrightarrow\) \(\widehat{A}\) = \(\widehat{D}\) = 75o

Vậy: \(\widehat{A}\) = \(\widehat{D}\) = 75o

\(\widehat{B}\) = \(\widehat{E}\) = 55o

\(\widehat{C}\) = \(\widehat{F}\) = 50o

2) ΔDEF = ΔMNP nên:

\(\Rightarrow\) DE = MN

EF = NP

FD = PM

Ta có: EF + FD = 10cm

mà ΔDEF = ΔMNP

\(\Rightarrow\) NP - MP = EF - FD = 2cm

\(\Rightarrow\) EF = \(\frac{10+2}{2}\) = 6cm

FD = 6cm - 2cm = 4cm

Vậy: DE= MN = 3cm

EF = NP = 6cm

FD = PM = 4cm