Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Do tam giác ABC vuông tại A
=> Theo định lý py-ta-go ta có
BC^2=AB^2+AC^2
=>BC=\(\sqrt{AB^2+AC^2}\)= \(\sqrt{9^2+12^2}\)=\(\sqrt{225}\)=15
Vậy cạnh BC dài 15 cm
b)Xét Tam giác ABE vuông tại A và tam giác DBE vuông tại D có
BE là cạnh chung
AB=BD(Giả thiết)
=>Tam giác ABE=Tam giác DBE(CGV-CH)
B A C H D E K M
GT | △ABC (BAC = 90o) , AB = 9 cm , AC = 12 cm D BC : BD = BA. DK ⊥ BC (K AB , DK ∩ AC = { E } AH ⊥ BC , AH ∩ BE = { M } |
KL | a, BC = ? b, △ABE = △DBE ; BE là phân giác ABC c, △AME cân |
Bài giải:
a, Xét △ABC vuông tại A có: BC2 = AB2 + AC2 = 92 + 122 = 81 + 144 = 225 => BC = 15 (cm)
b, Xét △ABE vuông tại A và △DBE vuông tại D
Có: AB = BD (gt)
BE là cạnh chung
=> △ABE = △DBE (ch-cgv)
=> ABE = DBE (2 góc tương ứng)
Mà BE nằm giữa BA, BD
=> BE là phân giác ABD
Hay BE là phân giác ABC
c, Vì △ABE = △DBE (cmt)
=> AEB = DEB (2 góc tương ứng)
Vì DK ⊥ BC (gt)
AH ⊥ BC (gt)
=> DK // AH (từ vuông góc đến song song)
=> AME = MED (2 góc so le trong)
Mà MED = MEA (cmt)
=> AME = MEA
=> △AME cân
a) xét tam giác AEF có
AH là đường cao của EF
AH là đường phân giác của góc A
\(H\in EF\)
=>tam giác AEF cân ở A
=>AH là đường cao đồng thời là đường trung tuyế của EF
=> H là trung điểm của EF
=>HE=HF=\(\frac{1}{2}EF\)(dpcm)
b)ta có \(\widehat{BME}=\widehat{CMF}\)(đối đỉnh )
mà \(\widehat{ACB}=\widehat{F}+\widehat{CMF}\)( t/c góc ngoài của tam giác )
ta có \(\widehat{F}=\widehat{AEF}\)(tam giác AEF cân ) mà\(\widehat{AEF}=\widehat{B}+\widehat{BME}\)
\(\Leftrightarrow\widehat{ACB}=\widehat{B}+\widehat{BME}+\widehat{CMF}\)
\(\Leftrightarrow\widehat{ACB}=\widehat{B}+2\widehat{BME}\)
=>\(\widehat{2BME}=\widehat{ACB}-\widehat{B}\)
c) tam giác AHE có
góc AHE =90 độ => \(HE^2+AH^2+AE^2\left(pi-ta-go\right)\)
thay \(HE=\frac{1}{2}EF\)ta được
\(\left(\frac{1}{2}EF\right)^2+AH^2=AE^2\)
=>\(\frac{EF^2}{4}+AH^2=AE^2\left(dpcm\right)\)
d) kẻ BI//AC =>\(\widehat{BIE}=\widehat{AFH},\widehat{AFH}=90^0-\frac{1}{2}\widehat{A}\)\(\Leftrightarrow\widehat{BIE}=90^0-\frac{1}{2}\widehat{A}\)(1)
mà tam giác AHE zuông tại H
=>\(\widehat{AHE}=90^0-\frac{1}{2}\widehat{A}\left(2\right)\)
từ 1 zà 2 =>\(\widehat{BIE}=\widehat{AHE}=>\Delta BEI\)cân tại B
=> BE=BI(3)
xét tam giác MFC có \(BI//FC;B\in MC;I\in MF\)
=>\(\frac{BI}{FC}=\frac{MB}{MC}=1\)
=>\(BI=FC\left(4\right)\)
từ 3 zfa 4
=> BE=CF (dpcm