K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

BM: 2x-y+1=0

=>M(x;2x+1)

CN: x+y-4=0

=>C(-y+4;y)

Theo đề, ta có: -y+4+(-2)=2x và y+3=2(2x+1)

=>4x+2-y-3=0 và 2x+y-2=0

=>4x-y-1=0 và 2x+y-2=0

=>x=1/2 và y=1

=>M(1/2;2); C(3;1)

Tọa độ G là:

2x-y+1=0 và x+y-4=0

=>x=1 và y=3

G(1;3); B(x;y); M(1/2;2)

Theo đè, ta có; vecto BG=2/3vecto BM

=>1-x=2/3x và 3-y=2/3(2-y)

=>1-5/3x=0 và 3-y-4/3+2/3y=0

=>x=3/5 và y=5

=>B(3/5;5); A(-2;3); C(3;1)

vecto BA=(-2,6;-2)

=>VTPT là (2;2,6)=(10;13)

Phương trình BA là:

10(x+2)+13(y-3)=0

=>10x+20+13y-39=0

=>10x+13y-19=0

vecto AC=(5;-2)

=>VTPT là (2;5)

Phương trình AC là:

2(x-3)+5(y-1)=0

=>2x-6+5y-5=0

=>2x+5y-11=0

vecto BC=(2,4;-4)

=>VTPT là (5;3)

Phương trình BC là

5(x-3)+3(y-1)=0

=>5x-15+3y-3=0

=>5x+3y-18=0

26 tháng 2 2020

Từ gt=>B(1;4) và N(3;5)(CN cắt AB)=>A(5;6)

G là trọng tâm tam giác->G(6;-1)

=>NG=\(3\sqrt{5}\)

Vì C thuộc CN=> C(c;11-2c)

Vì CG=2GN=>\(CG=6\sqrt{5}\Rightarrow CG^2=180\Rightarrow\left(6-c\right)^2+\left(-1-\left(11-2c\right)\right)^2=180\)

\(\Leftrightarrow\left[{}\begin{matrix}c=0\\c=12\end{matrix}\right.\)

Xét C(0;11)

Xét tích(0-2.11+7)(6-2.(-1)+7)=-225<0=>C,G khác phía so với AB(Loại)

=>C(12;-13)

Khi đó ta sẽ tìm được phương trình hai cạnh còn lại

13 tháng 3 2021

1.

Do A không thuộc hai đường trung tuyến đã cho nên giả sử đường trung tuyến xuất phát từ B, C lần lượt là \(2x-y+1=0;x+y-4=0\)

Trọng tâm G của tam giác có tọa độ là nghiệm của hệ \(\left\{{}\begin{matrix}2x-y+1=0\\x+y-4=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=3\end{matrix}\right.\Rightarrow G=\left(1;3\right)\)

Gọi M là trung điểm BC, ta có \(\overrightarrow{AG}=\dfrac{2}{3}\overrightarrow{AM}\)

\(\Rightarrow\left\{{}\begin{matrix}1+3=\dfrac{2}{3}\left(x_M+2\right)\\3-3=\dfrac{2}{3}\left(y_M-3\right)\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x_M=4\\y_M=3\end{matrix}\right.\Rightarrow M=\left(4;3\right)\)

Gọi \(N=\left(m;2m+1\right)\) là trung điểm AC \(\Rightarrow C=\left(2m+2;4m-1\right)\)

Mà C lại thuộc CG nên \(2m+2+4m-1-4=0\Rightarrow m=\dfrac{1}{2}\)

\(\Rightarrow C=\left(3;1\right)\)

Phương trình đường thẳng BC:

\(\dfrac{x-4}{3-4}=\dfrac{y-3}{1-3}\Leftrightarrow2x-y-5=0\)

13 tháng 3 2021

2.

1.

Trọng tâm G của tam giác có tọa độ là nghiệm của hệ \(\left\{{}\begin{matrix}x-5y+1=0\\x+y-1=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{2}{3}\\y=\dfrac{2}{3}\end{matrix}\right.\Rightarrow G=\left(\dfrac{2}{3};\dfrac{1}{3}\right)\)

Gọi I là trung điểm BC, ta có \(\overrightarrow{AG}=\dfrac{2}{3}\overrightarrow{AI}\)

\(\Rightarrow\left\{{}\begin{matrix}\dfrac{2}{3}-1=\dfrac{2}{3}\left(x_I-1\right)\\\dfrac{1}{3}-2=\dfrac{2}{3}\left(y_I-2\right)\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x_I=\dfrac{1}{2}\\y_I=-\dfrac{1}{2}\end{matrix}\right.\Rightarrow I=\left(\dfrac{1}{2};-\dfrac{1}{2}\right)\)

Gọi \(M=\left(5m-1;m\right)\) \(\Rightarrow C=\left(10m-3;2m-2\right)\)

Mà C lại thuộc CN nên \(10m-3+2m-2-1=0\Rightarrow m=\dfrac{1}{2}\)

\(\Rightarrow C=\left(2;-1\right)\)

Phương trình đường thẳng BC:

\(\dfrac{x-2}{2-\dfrac{1}{2}}=\dfrac{y+1}{-1+\dfrac{1}{2}}\Leftrightarrow x+3y+1=0\)

AH: 2x+5y+3=0

=>BC: 5x-2y+c=0

Thay x=3 và y=5 vào BC, ta được:

c+15-10=0

=>c=-5

=>5x-2y-5=0

Tọa độ C là:

5x-2y-5=0 và x+y-5=0

=>5x-2y=5 và x+y=5

=>x=15/7 và y=20/7

=>C(15/7;20/7)

AH: 2x+5y+3=0

=>A(x;-2/5x-3/5)

CM: x+y-5=0

=>M(-y+5;y)

Theo đề, ta có: x+3=2(-y+5) và -2/5x-3/5+5=2y

=>x+3+2y=10 và -2/5x+17/5-2y=0

=>x+2y=7 và -2/5x-2y=-17/5

=>x=6 và y=1/2

=>A(6;-3); B(3;5); C(15/7;20/7)

vecto AB=(-3;8)

=>VTPT là (8;3)

=>Phương trình AB là:

8(x-3)+3(y-5)=0

=>8x-24+3y-15=0

=>8x+3y-39=0

A(6;-3); C(15/7;20/7)

vecto AC=(-20/7;41/7)

=>VTPT là (41/7;20/7)

Phương trình AC là:

41/7(x-6)+20/7(y+3)=0

=>41(x-6)+20(y+3)=0

=>41x-246+20y+60=0

=>41x+20y-186=0

NV
22 tháng 3 2019

Gọi M là trung điểm AB, do \(M\in d_2\Rightarrow M\left(1;a\right)\)

\(\Rightarrow\left\{{}\begin{matrix}x_B=2x_M-x_A=-1\\y_B=2y_M-y_A=2a-1\end{matrix}\right.\)

Do \(B\in d_1\Rightarrow2\left(-1\right)-\left(2a-1\right)-1=0\Rightarrow a=-1\) \(\Rightarrow B\left(-1;-3\right)\)

Gọi N là trung điểm AC, do \(N\in d_1\Rightarrow N\left(b;2b-1\right)\)

\(\Rightarrow\left\{{}\begin{matrix}x_C=2x_N-x_A=2b-3\\y_C=2y_N-y_A=4b-3\end{matrix}\right.\)

Do \(C\in d_2\Rightarrow2b-3-1=0\Rightarrow b=2\Rightarrow C\left(1;5\right)\)

\(\overrightarrow{BA}=\left(4;4\right)\Rightarrow\) đường thẳng AB có 1 vtpt là \(\overrightarrow{n_{AB}}=\left(1;-1\right)\)

\(\Rightarrow\) pt AB: \(1\left(x-3\right)-1\left(y-1\right)=0\Leftrightarrow x-y-2=0\)

\(\overrightarrow{AC}=\left(-2;4\right)\Rightarrow\) đường thẳng AC có 1 vtpt \(\overrightarrow{n_{AC}}=\left(2;1\right)\)

\(\Rightarrow\) pt AC: \(2\left(x-3\right)+1\left(y-1\right)=0\Leftrightarrow2x+y-6=0\)

\(\overrightarrow{BC}=\left(2;8\right)\Rightarrow\overrightarrow{n_{BC}}=\left(4;-1\right)\)

\(\Rightarrow\) pt BC: \(4\left(x+1\right)-1\left(y+3\right)=0\Leftrightarrow4x-y+1=0\)

16 tháng 2 2021

song ngư đẹp trai

16 tháng 2 2021

hiện nay mẹ hơn con 24 tuổi và tuổi con bằng 1 /3 tuổi mẹ cách đây 3 năm tuổi con là bao nhiêu

21 tháng 7 2017

hai đường trung tuyến đã cho đều không phải là đường trung tuyến xuất phát từ A vì tọa độ của A không thỏa mãn các phương trình của chúng .

đặc BM : \(2x-y+1=0\) và CN : \(x+y-4=0\) là 2 trung tuyến của tam giác ABC

đặc B\(\left(x;y\right)\) , ta có N \(\left(\dfrac{x-2}{2};\dfrac{y+3}{2}\right)\)\(\left\{{}\begin{matrix}B\in BM\\N\in CN\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}2x-y+1=0\\\dfrac{x-2}{2}+\dfrac{y+3}{2}-4=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}2x-y=-1\\x+y=7\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=2\\y=5\end{matrix}\right.\)

vậy phương trình đường thẳng chứa cạnh AB là : \(2x-4y+16=0\) \(\Leftrightarrow x-2y+8=0\)

tương tự ta có phương trình đường thẳng chứa cạnh AC là : \(2x+5y-11=0\) phương trình đường thẳng chứa cạnh BC là : \(4x+y-13=0\)

19 tháng 3 2020

Ta có : \(\overrightarrow{n_{AH}}=\left(3;1\right)\Rightarrow\overrightarrow{u_{AH}}=\overrightarrow{n_{BC}}=\left(1;-3\right)\)

PTTQ BC đi qua điểm B và nhân \(\overrightarrow{n_{BC}}\) làm VTPT :

\(1\left(x-2\right)-3\left(y+7\right)=0\)

\(\Leftrightarrow x-3y-23=0\)

Gọi \(M\left(a;b\right)\) . Vì \(M\in CM\Rightarrow a+2b+7=0\Rightarrow b=\frac{-a-7}{2}\) . Do đó \(M\left(a;\frac{-a-7}{2}\right)\)

\(\Rightarrow\left\{{}\begin{matrix}x_A=2x_M-x_B=2a-2\\y_A=2y_M-y_B=-a\end{matrix}\right.\)

\(A\in AH\) \(\Rightarrow3\left(2a-2\right)-a+11=0\) \(\Leftrightarrow a=-1\)

\(\Rightarrow A\left(-4;1\right);M\left(-1;-3\right)\)

\(\overrightarrow{u_{AB}}=\left(6;-8\right)\Rightarrow\overrightarrow{n_{AB}}=\left(8;6\right)\)

PTTQ của AB : \(8\left(x-2\right)+6\left(y+7\right)=0\)

\(\Leftrightarrow4x+3y+13=0\)

\(C=CM\cap BC\Rightarrow C\left(5;-6\right)\)

\(\overrightarrow{u_{AC}}=\left(9;-7\right)\Rightarrow\overrightarrow{n_{AC}}=\left(7;9\right)\)

PTTQ của AC : \(7\left(x-5\right)+9\left(y+6\right)=0\)

\(\Leftrightarrow7x+9y+19=0\)

19 tháng 3 2020

Gọi $A\left( {{x}_{A}};{{y}_{A}} \right);C\left( {{x}_{C}};{{y}_{C}} \right)$

Phương trình đường cao qua $A:\left( d \right):3x+y+11=0$

$\overrightarrow{{{u}_{d}}}=\left( 3;1 \right)\Rightarrow \overrightarrow{AC}.\overrightarrow{u{{ & }_{d}}}=3\left( {{x}_{C}}-{{x}_{A}} \right)+1\left( {{y}_{C}}-{{y}_{A}} \right)=0$

Phương trình trung tuyến qua $C:\left( d' \right):x+2y+7=0$

$d\cap AB=M\left( \dfrac{2+{{x}_{A}}}{2};\dfrac{{{y}_{A}}-7}{2} \right)$

Ta có hệ phương trình: \(\left\{ \begin{array}{l} 3\left( {{x_C} - {x_A}} \right) + {y_C} - {y_A} = 0\\ 3{x_A} + {y_A} + 11 = 0\\ {x_C} + 2{y_C} + 7 = 0\\ \dfrac{{2 + {x_A}}}{2} + 2.\dfrac{{{y_A} - 7}}{2} + 7 = 0 \end{array} \right. \Leftrightarrow \left\{ \begin{array}{l} {x_A} = - 4\\ {y_A} = 1\\ {x_C} = - 1\\ {y_C} = - 8 \end{array} \right.\)

\(\begin{array}{l} \Rightarrow A\left( { - 4;1} \right);C\left( { - 1; - 8} \right) \Rightarrow \overrightarrow {AB} = \left( {2; - 8} \right);\overrightarrow {AC} = \left( {3; - 9} \right);\overrightarrow {BC} = \left( { - 3; - 1} \right)\\ AB:2\left( {x + 4} \right) - 8\left( {y - 1} \right) = 0 \Rightarrow 2x - 8y + 16 = 0\\ AC:3\left( {x + 1} \right) - 9\left( {y + 8} \right) = 0 \Rightarrow 3x - 9y - 69 = 0\\ BC: - 3\left( {x + 1} \right) - 1\left( {y + 8} \right) = 0 \Rightarrow - 3x - y - 11 = 0 \end{array}\)

20 tháng 1 2020

Còn lại tự tính nhé!

Hỏi đáp Toán