Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A B C O D E
Nối OA. Vì O là giao điểm của hai đường phân giác BO và CO nên O đường phân giác thứ ba cũng đi qua O. Suy ra OA là tia phân giác của góc A. Xét hai tam giác vuông : tam giác AOD và tam giác AOE có AO là cạnh chung , góc BOA = góc OAD
=> tam giác AEO = tam giác ADO (ch.gn) => OD = OE
Ta có hình vẽ:ABCOEDXét tam giác EOB và tam giác DOC có:
\(\widehat{E}\)=\(\widehat{D}\)=900
\(\widehat{EBO}\)=\(\widehat{DCO}\)
OB = OC
=> tam giác EOB = tam giác DOC
=> OD = OE (2 cạnh tương ứng)
Xét ΔADO vuông tại D và ΔAEO vuông tại E có
AO chung
\(\widehat{DAO}=\widehat{EAO}\)
Do đó: ΔADO=ΔAEO
Suy ra: OD=OE
Kẻ OK vuông góc với BC
Tam giác OKC và ODC là 2 tam giác vuông có:
OC là cạnh chung
góc C1 = góc C2 ( CO là tia phân giác)
=> tam giác OKC = tam giác ODC ( cạnh huyền, góc nhọn)
=> OK = OD ( 2 cạnh tương ứng ) (1)
Chứng minh tương tụ ta cũng có :
tam giác OKB = tam giác OEB (cạnh huyền, góc nhọn)
=> OK = OE ( 2 cạnh tương ứng ) (2)
Từ (1) và (2) => OE = OD
=> Đpcm.
A B C E D K O
Xét ΔADO vuông tại D và ΔAEO vuông tại E có
AO chung
\(\widehat{DAO}=\widehat{EAO}\)
Do đó: ΔADO=ΔAEO
Suy ra: OD=OE
A B C O D E
Lưu ý: Các bạn vẽ hình nữa nha.