Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A C H B 1 2
a,Áp dụng định lý - pi-ta-go ta có
\(AB^2=AH^2+HB^2\)
Hay \(20^2=AH^2+12^2\)
\(AH=16\)
\(\Rightarrow AC=\frac{5}{3}.16\approx26,7\)
\(\Delta ABH\)đồng dạng \(\Delta CAHvì\hept{\begin{cases}\widehat{AHB}=\widehat{AHC}\\\frac{AC}{AH}=\frac{AB}{BH}\left(=\frac{5}{3}\right)\end{cases}}\)
b,Vì \(\Delta ABH\)đồng dạng \(\Delta CAH\)
\(\Rightarrow\widehat{A1}=\widehat{C}\left(1\right)\)
\(\Delta AHC\)có \(\widehat{AHC}=90^o\rightarrow\widehat{A2}+\widehat{C}=90^o\left(2\right)\)
\(\left(1\right)\left(2\right)\Rightarrow\widehat{A1}+\widehat{A2}=90^o\)
Hay \(\widehat{BAC}=90^o\)
a,Tam giác ABC có BE là tia phân giác của \(\widehat{ABC}\left(gt\right)\Rightarrow\frac{BA}{BC}=\frac{EA}{EC}\)
\(\Rightarrow\frac{EA}{EC}=\frac{4}{5}\Rightarrow\frac{EA}{4}=\frac{EC}{5}=\frac{EA+EC}{4+5}=\frac{AC}{9}=\frac{6}{9}=\frac{2}{3}\)
\(\Rightarrow EA=\frac{8}{3}\left(cm\right),EC=\frac{10}{3}\left(cm\right)\)
Ta có: \(\frac{AB}{AE}=\frac{4}{\frac{8}{3}}=\frac{3}{2}\)
\(\frac{AC}{AB}=\frac{6}{4}=\frac{3}{2}\Rightarrow\frac{AB}{AE}=\frac{AC}{AB}\)
\(\Delta ABC\infty\Delta AEB\left(c.g.c\right)\Rightarrow\frac{AC}{AB}=\frac{BC}{EB}\Rightarrow\frac{6}{4}=\frac{5}{EB}\Rightarrow EB=\frac{10}{3}\left(cm\right)\)
b, \(\Delta ABC\infty\Delta AEB\left(cmt\right)\Rightarrow\widehat{ACB}=\widehat{ABE}\)
Mà BE là tia p/g của \(\widehat{ABC}\left(gt\right)\Rightarrow\widehat{ABC}=2\widehat{ABE}\Rightarrow\widehat{ABC}=2\widehat{ACB}\)
c, \(\Delta BCF\) cân tại B (vì BC = BF = 5 cm) \(\Rightarrow\widehat{F}=\widehat{BCF}\)
Do đó: \(\widehat{ABE}=\frac{1}{2}\widehat{ABC}=\frac{1}{2}\left(\widehat{BCF}+\widehat{F}\right)=\widehat{F}\)
\(\Rightarrow BE//FC\Rightarrow\frac{BE}{FC}=\frac{AB}{AF}\Rightarrow\frac{\frac{10}{3}}{FC}=\frac{4}{9}\Rightarrow FC=7,5\left(cm\right)\)
a) Xét \(\Delta HAC\)và \(\Delta ABC\)có:
\(\widehat{AHC}=\widehat{BAC}=90^0\)
\(\widehat{C}\) chung
suy ra: \(\Delta HAC~\Delta ABC\)
b) Áp dụng định lý Pytago vào tam giác vuông ABC
\(BC^2=AB^2+AC^2\)
\(\Rightarrow\) \(BC^2=12^2+16^2=400\)
\(\Leftrightarrow\)\(BC=\sqrt{400}=20\)cm
\(\Delta ABC\) có \(AD\)là phân giác \(\widehat{BAC}\)
\(\Rightarrow\)\(\frac{DB}{AB}=\frac{DC}{AC}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{DB}{AB}=\frac{DC}{AC}=\frac{DB+DC}{AB+AC}=\frac{20}{12+16}=\frac{5}{7}\)
suy ra: \(\frac{DB}{AB}=\frac{5}{7}\)\(\Rightarrow\)\(DB=8\frac{4}{7}\)
\(\frac{DC}{AC}=\frac{5}{7}\)\(\Rightarrow\)\(DC=11\frac{3}{7}\)
c) Xét \(\Delta CED\)và \(\Delta CAB\)có:
\(\widehat{CED}=\widehat{CAB}=90^0\)
\(\widehat{ECD}\) chung
suy ra: \(\Delta CED~\Delta CAB\)
\(\Rightarrow\)\(\frac{CE}{AC}=\frac{ED}{AB}\)
\(\Rightarrow\)\(CE.AB=AC.ED\) (đpcm)
thực ra mk cần nhất là ý d còn lại mk tự lm theo cách của mk rùi có bn nào tốt bụng giúp mk vs