\(\Delta ABC;M\)là trung điểm BC; \(N\)là 1 điểm trong ta...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 11 2015

Có : NB = NC

=> tam giác NBC cân tại N

Có : NM vừa là đường trung tuyến vừa là đường cao

=> NM vuông góc với BC

Xét tam giác NMB và tam giác NMC có:

NM = NC

Cạnh NM chung

Góc NMB = NMC = 900

=> tám giác NMB = NMC (cạnh huyền cạnh góc vuông) (đpcm)

2 tháng 7 2019

B1 : 

Cách 1 :

Xét \(\Delta NMB\)và \(\Delta NMC\)có :

NB = NC  ( gt )

NM là cạnh chung

MB = MC ( do M là trung điểm của BC )

nên \(\Delta NMB=\Delta NMC\left(c.c.c\right)\)

Cách 2 :

Do NB = NC => tam giác NBC cân tại N => \(\widehat{NBM}=\widehat{NCM}\)

Xét \(\Delta NMB\)và \(\Delta NMC\)có :

NB = NC ( gt )

\(\widehat{NBM}=\widehat{NCM}\)( CMT )

MB = MC ( do M là trung điểm của BC )

nên \(\Delta NMB=\Delta NMC\left(c.g.c\right)\)

Cách còn lại tự làm nhá

B2 :

Cách 1 :

\(\Delta ABC\)có AB = AC => \(\Delta ABC\)cân tại A => \(\widehat{B}=\widehat{C}\)

AE là tia p/g của \(\widehat{BAC}\) => \(\widehat{BAE}=\widehat{CAE}\)

Xét \(\Delta ABE\)và \(\Delta ACE\)có :

AC = AB ( gt )

\(\widehat{BAE}=\widehat{CAE}\) ( CMT )

AE là cạnh chung

nên \(\Delta ABE=\Delta ACE\)\(\left(c.g.c\right)\)

Cách 2 :

Xét \(\Delta ABE\)và \(\Delta ACE\)có :

\(\widehat{BAE}=\widehat{CAE}\)( AE là tia p/g của BAC )

AB = AC ( gt )

\(\widehat{B}=\widehat{C}\)( do tam giác ABC cân tại A )

nên \(\Delta ABE=\Delta ACE\left(g.c.g\right)\)

6 tháng 2 2017

xet tm giac AMB VA TAM GIAC NMC CO

AM=MN

CM=MB

M CHUNG

=>TAM GIÁC AMB=TAM GIÁC NM(CGC)

B,XÉT TAM GIÁC AMC VÀ TAM GIÁC NMB CÓ

MC=MB

AM=MN

M CHUG

=> TÂM GIACC AMC= TAM GIÁC NMB (CGC)

6 tháng 2 2017

Còn câu c và d thì sao =-=

28 tháng 6 2020

a.Xét tam giác AMH và tam giác NMB có 

          MA = MN [ gt ]

         góc AMH = góc NMB [ đối đỉnh ]

         HM = BM [ gt ]

Do đó ; tam giác AMH = tam giác NMB [ c.g.c ]

\(\Rightarrow\)góc AHM = góc NBM 

mà bài cho góc AHM = 90độ

\(\Rightarrow\)góc NBM = 90độ

Vậy NB vuông góc với BC 

b.Theo câu a ; tam giác AMH = tam giác NMB 

\(\Rightarrow\)AH = NB [ cạnh tương ứng ]

Mặt khác ; Xét tam giác AHB vuông tại H có 

AB lớn hơn AH 

\(\Rightarrow\)AB lớn hơn NB 

25 tháng 5 2017

Chắc là bạn vẽ hình được!!

a)  Xét 2 tam giác AMH và NMB có:

            AM = MN  (giả thiết)

         \(\widehat{AMH}=\widehat{BMN}\) (hai góc đối đỉnh)

         BM = MH  (giả thiết)

=> \(\Delta\)AMH = \(\Delta\)NMB (c.g.c)

=> \(\widehat{MBN}=\widehat{MHA}=90^o\)(hai góc tương ứng) => \(NB⊥BC\)

b) Vì \(\Delta\)ABC cân tại A => \(\widehat{ABC}< 90^o\), mà \(\widehat{MBN}=90^o\) (cmt)

=> \(\widehat{ABC}< \widehat{MBN}\)

Xét \(\Delta ABN\), đường trung tuyến BM có \(\widehat{ABC}< \widehat{MBN}\)   => BN < BA.

c) Xét tứ giác ABNH có:  BM = MH (giả thiết)

                                     MN = AM (giả thiết)

    => tứ giác ABNH là hình bình hành (theo DHNB)

    => AM là tia phân giác \(\widehat{BAH}\)(tính chất của hình bình hành)

    => \(\widehat{BAM}=\widehat{MAH}\)

\(\Delta ABC\)cân tại A (giả thiết), AH là đường cao => \(AH⊥BC\) (1)=> AH cũng là đường trung tuyến => BH = HC.

 Xét \(\Delta BNC\)vuông tại B có, đường trung tuyến BI (giả thiết)

   => BI = IC (t/c đường trung tuyến ứng với cạnh huyền bằng nửa cạnh huyền trong tam giác vuông)

=> \(\Delta BIC\)cân tại I, mà BH = HC (cmt) => IH là đường trung tuyến của \(\Delta BIC\)cân

=> IH cũng là đường cao của \(\Delta BIC\)=> \(IH⊥BC\)(2)

Từ (1) và (2) => A, H, I thẳng hàng.

P/s: mình mất 45 phút để viết hết toàn bộ bài này!!

25 tháng 5 2017

Tự vẽ hình nha :

a) 

Xét tam giác AMH và tam giác NMB có :

AM = NM

BM = HM                           => \(\Delta AMH=\Delta NMB\)   (1)

Góc BMN = góc HMA

b) Từ 1 , ta suy ra :

AH = BN

Xét tam giác vuông AHB có AB là cạnh huyền 

=> AH < AB

Đồng thời BN < AB (Điều phải chứng minh)

c) Từ BN < AB

=> Góc BAM < góc BNA (Quan hệ góc và cạnh)

Mặt khác góc BNA = góc MAH (từ 1)

=> Góc BAM = Góc MAH

d) Nối BI lại 

Vì tam giác BNC vuông nên 

Với BI là đường trung tuyến thì 

BI = NI = IC

Xét tam giác ABI và tam giác ACI có :

BI = CI

AB = AC    => \(\Delta ABI=\Delta ACI\)

AI chung 

=> Góc BAI = Góc CAI

=> AI là đường phân giác của góc BAC  (a)

Mặt khác , tam giác ABC cân tại A và AH là đường cao 

=> AH cũng là đường phân giác  (b) 

Từ (a) và (b) 

=> A , H , I thẳng hàng

Câu 4. Cho tam giác ABC có AB = 9cm, AC = 12cm, BC = 15cm, gọi M là trung điểm của BC. Trên tia đối của tia MA lấy điểm D sao cho MD = MA. a) Chứng minh tam giác ABC vuông tại A. b) CM: \(\Delta MAB\) = \(\Delta MDC\). c) Gọi K là trung điểm của AC chứng minh KD = KB. d) KD cắt BC tịa I, KB cắt AD tại N chứng minh \(\Delta KNI\) cân. Câu 5. Cho tam giác ABC vuông ở A , có C = 300 . Gọi M là trung điểm của BC, trên tia đối...
Đọc tiếp

Câu 4. Cho tam giác ABC có AB = 9cm, AC = 12cm, BC = 15cm, gọi M là trung điểm của BC. Trên tia đối của tia MA lấy điểm D sao cho MD = MA. a) Chứng minh tam giác ABC vuông tại A. b) CM: \(\Delta MAB\) = \(\Delta MDC\). c) Gọi K là trung điểm của AC chứng minh KD = KB. d) KD cắt BC tịa I, KB cắt AD tại N chứng minh \(\Delta KNI\) cân.

Câu 5. Cho tam giác ABC vuông ở A , có C = 300 . Gọi M là trung điểm của BC, trên tia đối của tia MA lấy điểm D sao cho MD = MA. a/ Chứng minh : AB = CD. b/ Chứng minh: \(\Delta BAC=\Delta DAC\). c/ Chứng minh : \(\Delta ABM\) là tam giác đều.

Câu 6. Cho tam giác ABC vuông ở B, gọi M là trung điểm của BC . Trên tia đối của tia MA lấy điểm E sao cho ME = MA. Chứng minh: a/ \(\Delta ABM=\Delta ECM\). b/ AC > CE. c/ góc BAM>góc MAC

4
1 tháng 5 2020

(tự vẽ hình )

câu 4:

 a) có AB2 + AC= 225

BC= 225

Pytago đảo => \(\Delta ABC\)vuông tại A

b) Xét \(\Delta MAB\)và \(\Delta MDC\)

MA = MD (gt)

BM = BC ( do M là trung điểm của BC ) 

\(\widehat{AMB}=\widehat{CMD}\)( hai góc đối đỉnh )

=> \(\Delta MAB\)\(\Delta MDC\) (cgc)

c) vì \(\Delta MAB\)\(\Delta MDC\)

=> \(\hept{\begin{cases}AB=DC\\\widehat{MAB}=\widehat{MDC}\end{cases}}\)

=> AB// DC

lại có AB \(\perp\)AC => DC \(\perp\)AC => \(\Delta KCD\)vuông tại C

Xét \(\Delta\) vuông ABK và \(\Delta\)vuông KCD:

AB =CD (cmt)

AK = KC ( do k là trung điểm của AC )

=> \(\Delta\)vuông AKB = \(\Delta\)vuông CKD (cc)

=> KB = KD

d. do KB = KD => \(\Delta KBD\)cân tại K

=> \(\widehat{KBD}=\widehat{KDB}\)(1)

có \(\Delta ADC\)vuông tại C => \(AD=\sqrt{AC^2+DC^2}=15\)

=> MD = 7.5

mà MB = 7.5

=> MB = MD 

=> \(\Delta MBD\)cân tại M

=> \(\widehat{MBD}=\widehat{MDB}\)(2)

Từ (1) và (2) => \(\widehat{KBD}-\widehat{MBD}=\widehat{KDB}-\widehat{MDB}\)hay \(\widehat{KBM}=\widehat{KDM}\)

Xét \(\Delta KBI\)và \(\Delta KDN\)có:

\(\widehat{KBI}=\widehat{KDN}\)(cmt)

\(\widehat{KBD}\)chung

KD =KB (cmt) 

=> \(\Delta KBI\)\(\Delta KDN\)(gcg)

=> KN =KI 

=. đpcm

1 tháng 5 2020

câu 5: 

a) Xét \(\Delta ABM\)và \(\Delta MDC\):

MA=MD(gt)

MB=MC (M là trung điểm của BC)

\(\widehat{BMA}=\widehat{DMC}\)( đối đỉnh )

=> \(\Delta BMA=\Delta CMD\)(cgc)

b) Xét \(\Delta\)vuông ABC 

có AM là đường trung tuyến của tam giác 

=> \(AM=\frac{1}{2}BC\)mà \(BM=MC=\frac{1}{2}BC\)(do M là trung điểm của BC )

=> AM = BM = MC 

có MA =MD => AM = MD =MB =MC

=> BM +MC = AM +MD hay BC =AD

Xét \(\Delta BAC\)và \(\Delta DCA\)

AB =DC

AC chung

BC =DC

=> \(\Delta BAC\)\(\Delta DCA\)(ccc)

c. Xét \(\Delta ABM\)

BM=AM

\(\widehat{ABM}\)= 600

=> đpcm

7 tháng 2 2021

giúp tui với!

29 tháng 4 2019

xét tam giác AMH và tam giác NMB có : AM = MN (gt)

BM = MH do M là trung điểm của BH (gt)

góc AMH = góc NMB (đối đỉnh)

=> tam giác AMH = tam giác NMB (c - g - c)

=> góc AHM = góc NBM (đn)

mà góc AHM = 90 do AH _|_ BC (gt)

=> góc NBM = 90

=> BN _|_ BC (đn)

29 tháng 4 2019

Do \(\Delta\)ABC cân tại A nên AH là đường cao đồng thời là đường trung tuyến

Ta có:H là trung điểm BC,I là trung điểm CN 

Áp dụng định lý sau: "đoạn thẳng nối trung điểm 2 cạnh bất kì của một tam giác thì song song với cạnh còn lại và bằng nửa cạnh ấy, đoạn thẳng này gọi là đường trung bình" cho tam giác BCN thì: HI//BN

Mà: HAM=BNM (suy ra trực tiếp từ kết quả câu a)

=>AH//BN

Theo Tiên đề Euclid thì AH trùng HI hay A;H;I thẳng hàng 

27 tháng 3 2019

Hình:

A B C M D E

a)Xét tam giác AMB và tam giác CMD:

Có AM=CM(gt) ;AMB=CMD(đói đỉnh);BM=DM(Gt)

=> tam giác AMB=tam giác CMD(c.G.c)

b)Vì tam giác AMB=tam giác CMD

=>BAM=DCM(hai góc tương ứng)

Mà BAM=90 Độ 

=>DCM=90 độ

=>MC vuông góc với CD

mà Ba điểm A,M,C trùng nhau

=>AC vuông góc với CD(ĐPCM)

c) mình không biết cách làm

mong bạn k đúng cho mình nha