Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Trên tia đối của tia AC kẻ tia Ax.
Do đó AD là phân giác ngoài của \(\widehat{BAx}\).
Trên tia đối của tia AD lấy tia Ay. Lấy điểm F thuộc ia Ay sao cho \(\widehat{DCF}=\widehat{DAB}\)hay \(\widehat{DCF}=\widehat{A_2}\)
Xét \(\Delta BAD\)và \(\Delta FCD\)có:
\(\widehat{A_2}=\widehat{DCF}\)(hình vẽ trên).
\(\widehat{CDF}\)chung.
\(\Rightarrow\Delta BAD~\Delta FCD\left(g.g\right)\)
\(\Rightarrow\widehat{B_1}=\widehat{F_1}\)(2 góc tương ứng).
Và \(\frac{BD}{FD}=\frac{AD}{CD}\)(tỉ số đồng dạng).
\(\Rightarrow BD.CD=FD.AD\left(1\right)\)
Ta lại có: \(\widehat{A_1}=\widehat{A_2}\)(vì AD là phân giác của \(\widehat{BAx}\)).
Mà \(\widehat{A_1}=\widehat{A_3}\)(vì đối đỉnh).
\(\Rightarrow\widehat{A_2}=\widehat{A_3}\left(=\widehat{A_1}\right)\)
Xét \(\Delta BAD\)và \(\Delta FAC\)có:
\(\widehat{B_1}=\widehat{F_1}\)(chứng minh trên).
\(\widehat{A_2}=\widehat{A_3}\)(chứng minh trên).
\(\Rightarrow\Delta BAD~\Delta FAC\left(g.g\right)\)
\(\Rightarrow\frac{AD}{AC}=\frac{AB}{AF}\)(tỉ số đồng dạng).
\(\Rightarrow AD.AF=AB.AC\left(2\right)\)
Từ \(\left(1\right)\)và \(\left(2\right)\).
\(\Rightarrow FD.AD-AD.AF=BD.CD-AB.AC\)
\(\Rightarrow BD.CD-AB.AC=AD\left(FD-AF\right)\)
\(\Rightarrow BD.CD-AB.AC=AD.AD\)
\(\Rightarrow BD.CD-AB.AC=AD^2\)(điều phải chứng minh).
=>\(\dfrac{1}{AB}+\dfrac{1}{AC}=\dfrac{\sqrt{2}}{AD}\)
Sorry mình bận ôn thi k hay vào lắm nên trả lời muộn
theo đầu bài MN song song BC, dùng Talet ta có:
\(\frac{AM}{AB}=\frac{AN}{AC}=\frac{MN}{BC}\Rightarrow1-\frac{AM}{AB}=1-\frac{AN}{NC}=1-\frac{MN}{BC}\)
\(\Rightarrow\frac{BM}{AB}=\frac{NC}{AC}=\frac{BC-MN}{BC}\Rightarrow\frac{BM}{6}=\frac{NC}{9}=\frac{12-MN}{12}=\frac{BM+NC}{15}=\frac{MN}{15}\)
\(\Rightarrow\left(12-MN\right).15=12MN\Rightarrow27MN=180\Rightarrow MN=\frac{20}{3}\)
Thay vào dãy tỉ số bằng nhau phía trên ta có: \(\frac{BM}{6}=\frac{12-\frac{20}{3}}{12}=\frac{4}{9}\Rightarrow BM=\frac{8}{3}\)
- MN//BC NÊN TA CÓ :\(\frac{AM}{AB}=\frac{AN}{AC}=\frac{MN}{BC}\)
MÀ AM = 4 , AB =6 ,AC=9 ,BC=12 TÍNH ĐC NC = 3 CM VÀ MN = 8 CM
2. AD LÀ ĐƯỜNG PHÂN GIÁC NÊN TA CÓ : \(\frac{BD}{AB}=\frac{DC}{AC}=\frac{BD+DC}{AB+AC}=\frac{BC}{AB+AC}=\frac{12}{15}\Leftrightarrow\frac{DC}{9}=\frac{12}{15}\)
GIẢI RA DC = 7,2 CM .
3. MN // BC NÊN TAM GIÁC AMN ĐỒNG DẠNG TAM GIÁC ABC . SUY RA \(\frac{S_{AMN}}{S_{ABC}}=\frac{AM^2}{AB^2}=\frac{16}{36}=\frac{4}{9}\)
4 . TỰ LÀM NHÉ
M A B C D E O I K 1 2
a) Xét tứ giác ADME có:
\(MD//AE\left(MD//AC\right)\)
\(ME//AD\left(ME//AB\right)\)
\(\Rightarrow ADME\)là hình bình hành ( dấu hiệu 1 )
b) Vì ADME là hình bình hành ( câu a )
\(\Rightarrow DE\)cắt \(AM\)tại trung điểm
Mà O là trung điểm DE
\(\Rightarrow\)O là trung điểm AM
\(\Rightarrow\)A,O,M thẳng hàng (đpcm)
c) Xét \(\Delta AIM\)vuông tại I có IO là đường trung tuyến
\(\Rightarrow OI=OA=OM=\frac{1}{2}AM\)
\(\Rightarrow\Delta AOI\)cân tại O
\(\Rightarrow\widehat{A_1}\)\(=\widehat{I_1}\)
Xét \(\Delta AOI\)có: \(\widehat{O_1}=\widehat{A_1}+\widehat{I_1}\)( định lý góc ngoài tam giác )
\(\Rightarrow\widehat{O_1}=2.\widehat{A_1}\)
CMTT: \(\widehat{O_2}=2.\widehat{A_2}\)
Ta có: \(\widehat{IOK}=\widehat{O_1}+\widehat{O_2}=2\left(\widehat{A_1}+\widehat{A_2}\right)=2\widehat{BAC}=2.60^o=120^o\)
Vậy \(\widehat{IOK}=120^o\)
#Bảo___
Bổ sung câu c )
CM : \(\dfrac{EA}{EB}.\dfrac{DB}{DC}.\dfrac{FC}{FA}.\)
Bạn có ghi thiếu đề k
bạn ơi sai đề rồi vì AD2=AB.AC-DC.DB moi dung