K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Các câu hỏi dưới đây có thể giống với câu hỏi trên
8 tháng 4 2020
Hình bạn tự kẻ nhé!
Nối I với C.
- Vì tam giác ABM và tam giác AMC có chung chiều cao hạ từ A xuống BC nên:
SABM / SAMC = BM / MC = 1.
=> SABM = SAMC
CMTT, ta có: SBIM = SCMI
=> SABM - SBIM = SAMC - SCMI
hay SABI = SAIC
- Vì tam giác ABD và tam giác BDC có chung chiều cao hạ từ B xuống AC nên:
SABD / SBDC = AD / CD = 1/2
=> SBDC = 2 SABD
CMTT, ta có: SDIC = 2 SAID
=> SBDC - SDIC = 2 ( SABD - SAID )
hay SBIC = 2 SAIB
Ta có: SAIB + SAIC + SBIC = SABC
=> SAIB + SAIB + 2 SAIB = 20
<=> 4 SAIB = 20
<=> SAIB = 5. (cm2)
Vậy SAIB = 5 cm2.
Kẻ MK//BD
Xét ΔBDC có
M là trung điểm của CB
MK//BD
Do đó: K là trung điểm của CD
=>CK=KD=1/2CD=1/3AC=AD
Xét ΔAMK có
D là trung điểm của AK
DI//MK
Do đó: I là trung điểm của AM
Xét ΔBDC có MK//BD
nên MK/BD=CM/CB=1/2
Xét ΔAMK có DI//MK
nên DI/MK=1/2
=>DI=1/2MK=1/4BD
Kẻ BH vuông góc với AC
\(S_{ABC}=\dfrac{1}{2}\cdot BH\cdot AC\)
\(S_{ABD}=\dfrac{1}{2}\cdot BH\cdot AD\)
=>\(\dfrac{S_{ABC}}{S_{ABD}}=\dfrac{AC}{AD}=3\)
=>\(S_{ABD}=\dfrac{20}{3}\left(cm\right)\)
Kẻ AK vuông góc BD
\(S_{ABD}=\dfrac{1}{2}\cdot AK\cdot BD\)
\(S_{ABI}=\dfrac{1}{2}\cdot AK\cdot BI\)
=>\(\dfrac{S_{ABD}}{S_{ABI}}=\dfrac{BD}{BI}=\dfrac{4}{3}\)
=>\(S_{ABI}=\dfrac{20}{3}:\dfrac{4}{3}=\dfrac{20}{4}=5\left(cm^2\right)\)