Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu a
Xét tam giác ABD và AMD có
AB = AM từ gt
Góc BAD = MAD vì AD phân giác BAM
AD chung
=> 2 tam guacs bằng nhau
Câu b
Ta có: Góc EMD bằng CMD vì góc ABD bằng AMD
Bd = bm vì 2 tam giác ở câu a bằng nhau
Góc BDE bằng MDC đối đỉnh
=> 2 tam giác bằng nhau
a: Ta có: \(\widehat{BMA}+\widehat{ABM}=90^0\)
\(\widehat{BMD}+\widehat{DBM}=90^0\)
mà \(\widehat{ABM}=\widehat{DBM}\)
nên \(\widehat{BMA}=\widehat{BMD}\)
c: Xét ΔBAM vuông tại A và ΔBDM vuông tại D có
BM chung
\(\widehat{ABM}=\widehat{DBM}\)
Do đó: ΔBAM=ΔBDM
Suy ra: MA=MD
Xét ΔAME vuông tại A và ΔDMC vuông tại D có
MA=MD
\(\widehat{AME}=\widehat{DMC}\)
Do đó: ΔAME=ΔDMC
a) Do tam giác ABC vuông tại A
=> Theo định lý py-ta-go ta có
BC^2=AB^2+AC^2
=>BC=\(\sqrt{AB^2+AC^2}\)= \(\sqrt{9^2+12^2}\)=\(\sqrt{225}\)=15
Vậy cạnh BC dài 15 cm
b)Xét Tam giác ABE vuông tại A và tam giác DBE vuông tại D có
BE là cạnh chung
AB=BD(Giả thiết)
=>Tam giác ABE=Tam giác DBE(CGV-CH)
B A C H D E K M
GT | △ABC (BAC = 90o) , AB = 9 cm , AC = 12 cm D BC : BD = BA. DK ⊥ BC (K AB , DK ∩ AC = { E } AH ⊥ BC , AH ∩ BE = { M } |
KL | a, BC = ? b, △ABE = △DBE ; BE là phân giác ABC c, △AME cân |
Bài giải:
a, Xét △ABC vuông tại A có: BC2 = AB2 + AC2 = 92 + 122 = 81 + 144 = 225 => BC = 15 (cm)
b, Xét △ABE vuông tại A và △DBE vuông tại D
Có: AB = BD (gt)
BE là cạnh chung
=> △ABE = △DBE (ch-cgv)
=> ABE = DBE (2 góc tương ứng)
Mà BE nằm giữa BA, BD
=> BE là phân giác ABD
Hay BE là phân giác ABC
c, Vì △ABE = △DBE (cmt)
=> AEB = DEB (2 góc tương ứng)
Vì DK ⊥ BC (gt)
AH ⊥ BC (gt)
=> DK // AH (từ vuông góc đến song song)
=> AME = MED (2 góc so le trong)
Mà MED = MEA (cmt)
=> AME = MEA
=> △AME cân
xét tan giác ABH và ACH
AB=AC (gt)
BH=BC (gt)
AH là cạnh chung
vây tam giác ABH=ACH (c.c.c)
vậy goc AHB=AHC (2 góc tương ứng)
vì AHB+AHC=180 (kề bù)
Mà AHB=AHC
vậy AHB=AHC=180:2=90
vậy AH vuông góc với BC
vi CB vuông góc Cx (gt)
AH vuông góc BC (cmt)
vậy Cx//AH
tam giác vuông EBC có E+B=90
tam giác vuông AHB có BAH+ B=90
Vậy BAH=BEC hay BAH=AEC
Xét tg AHB và tg AHC,ta có:
AH chung
gBAH=gCAH(tia phân giác của góc A cắt BC tại H)
AB=AC(gt)
=>tg AHB =tg AHC(c-g-c)
Xét tg ABC,có:AB=AC (gt)
=>tg ABC cân tại A
mà AH là tia phân giác
=>AH là đường cao
=>AH vuông góc vs BC
Ta có:g BAH+g ABH=g AHB=90*
và gDHB+gDBH=gBDH=90*
=>góc HAB = góc BHD
gợi ý phần c
gọi F là giao điểm của AH và DE
Xét tg ADH và tg AEH,có
AH chung
ADH=AEH=90
DAH=EAH
=>tg ADH =tg AEH(ch-gn)
=>AD=AE
=>tg ADE cân tại A
mà AF là tia phân giác
=>AF vuông góc vs DE
ta có BHF=EFH=90
=>DE//BC
p/s:gợi ý thôi nên trình bày cẩn thận hơn nhé.