K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 5 2019

A B C D M

a, xét tam giác AMB và tam giác  CMD có : MB = MD (gt)

AM = CM do AM là trung tuyến

góc AMB = góc CMD (đối đỉnh)

=> tam giác AMB = tam giác CMD (c-g-c)

=> AB = CD (đn)

a) Xét \(\Delta ABC\) vuông tại A

\(Bc^2=Ab^2+AC^2\Rightarrow AB^2=BC^2-AC^2=10^2-8^2\text{​​}\Rightarrow AB=6cm\)

b) Xét \(\Delta ABM\)\(\Delta CDM\) có:

\(AM=CM;\widehat{AMB}=\widehat{CMD};BM=DM\)

\(\Rightarrow\) \(\Delta ABM\) = \(\Delta CDM\)

\(\Rightarrow\) \(\widehat{BAM}=\widehat{DCM}=90^ohayAC\perp CD\)

c) Có : BC + DC > BD

mà BM = 2 BD ; DC = AB

\(\Rightarrow\) DC + BC > 2BM

8 tháng 7 2019

A B C M

CM :

a) Áp dụng định lí Pi - ta - go vào t/giác ABC vuông tại A, ta có:

BC2 = AB2 +  AC2

=> AB2 = BC2 - AC2 = 102 - 82 = 100 - 64 = 36

=> AB = 6 (cm)

b) Xét t/giác ABM và t/giác CDM

có: BM = MD (gt)

   \(\widehat{AMB}=\widehat{CMD}\) (đối đỉnh)

  AM = CM (gt)

=> t/giác ABM = t/giác CDM (c.g.c)

=> AB = CD (2 cạnh t/ứng)

=> \(\widehat{A}=\widehat{C}\) (2 góc t/ứng)

Mà \(\widehat{A}=90^0\) => \(\widehat{C}=90^0\) => AC \(\perp\)CD

c) Xét t/giác ACD

 Ta có: BC + CD > BD (bất đẳng thức t/giác)

Mà CD = AB và 2BM = BD (vì BD = BM + MD và BM = MD)

=> AB + BC > 2BM

d) Ta có: AB < BC (6 cm < 10cm)

Mà AB = CD

=> CD > BC =>  \(\widehat{MBC}< \widehat{D}\) (quan hệ giữa cạnh và góc đối diện)

Mà \(\widehat{D}=\widehat{ABM}\) (vì t/giác ABM = t/giác CDM)

=> \(\widehat{CBM}< \widehat{ABM}\)

8 tháng 3 2023

Cho tam giác ABC vuông tại A có AB<AC,đường trung tuyến AM. Trên tia đối của tia AM lấy điểm D sao cho M là trung điểm AD.

a) chứng minh tam giác MAB= tam giác MDC và DC song song với AB

b) gọi K là trung điểm AC. Chứng minh tam giác BKD cân 

c) DK cắt BC tại O. Chứng minh CO=2/3CM

d) BK cắt AD tại N. Chứng minh MK vuông góc với NO

 

8 tháng 7 2019

a) Xét ΔABC vuông tại A, có:

BC2=AB2+AC2 ( Định lý Py-Ta-Go)

(=) 102=AB2+82

(=) 100=AB2+64

(=) AB2= 36

(=) AB =6(cm)  (do AB >0)

a) Áp dụng định lý Py ta go ta có :

BC2 =AB+ AC2

=> AB2 = 100 - 64 

=> AB = 6 cm

b) Xét ∆BAM và ∆DCM ta có :

BM = MD 

AM = MC ( BM là trung tuyến) 

BMA = CMD ( đối đỉnh) 

=> ∆BAM = ∆DCM (c.g.c)

=> BAC = MCD = 90 độ 

=> AC vuông góc với CD (dpcm)

=> AB = CD ( tg ứng )(dpcm)

27 tháng 8 2015

a) \(AC^2=BC^2-AB^2\)

 \(AC^2=10^2-6^2\)

 \(AC^2=100-36\)

 \(AC^2=64\)

\(AC=8\)

  A D C B M      

mình vẽ cái hinhf nó ko đc đẹp với chính xác đâu

b) Xét \(\Delta ABM\) và \(\Delta CDM\) ta có

BM = DM ( gt )

M là góc chung

AM = CM ( BN là đường trung tuyến )

Vậy \(\Delta AMB\) = \(\Delta CDM\) ( c.g.c )

\(\Rightarrow\) AB = CD ( 2 góc tương ứng )

 

 

 

2 tháng 9 2020

Bài này đề bài không rõ nha bạn !

23 tháng 3 2019

a, \(\Delta BAM=\Delta DCM\left(c.g.c\right)\Rightarrow\hept{\begin{cases}AB=CD\\\widehat{BAM}=\widehat{DCM}\end{cases}}\)

Mà \(\widehat{BAM}=90^0\left(\widehat{BAC}=90^0\right)\Rightarrow\widehat{DCM}=90^0\Rightarrow AC\perp CD\)

b, MB = MD (gt) và \(M\in BD\Rightarrow\) M là trung điểm của BD \(\Rightarrow BD=2BM\)

Áp dụng bất đẳng thức tam giác vào \(\Delta BCD:CD+BC>BD\)

\(\Rightarrow AB+BC>2BM\)(vì AB = CD, BD = 2BM)

c, Tam giác ABC vuông tại A \(\Rightarrow AB< BC\) (trong tam giác vuông, cạnh huyền lớn nhất)

\(\Rightarrow CD< BC\Rightarrow\widehat{CBD}< \widehat{D}\) (quan hệ giữa góc và cạnh đối diên trong tam giác BCD)

\(\Delta BAM=\Delta DCM\left(cmt\right)\Rightarrow\widehat{ABM}=\widehat{D}\)

Do đó: \(\widehat{CBD}< \widehat{ABM}\Rightarrow\widehat{CBM}< \widehat{ABM}\)

Chúc bạn học tốt.

22 tháng 4 2024

a) Xét ABM và CDM có:

MB=MD (gt)

góc BMA= góc DMC (đối đỉnh)

AM= CM (BM là đường trung tuyến)

=> ABM = CDM (c-g-c)

=> AB= CD (hai cạnh tương ứng)

=> Góc MCD= góc MAB (hai góc tương ứng)

=> Góc MCD= 90° hay góc ACD=90°

=> AC vuông góc CD.

b) Xét AMD và CMB có:

AM= CM (BM là đường trung tuyến)

góc AMD= góc CMB (đối đỉnh)

MB=MD (gt)

=> AMD = CMB(c-g-c)

=> AD= BC (hai cạnh tương ứng)

=> góc ADM= góc CBM (hai góc tương ứng)

Mà hai góc này ở vị trí so le trong.

=> AD//BC

c) Ta có: AD = BC.

Mà: BC > AB (trong tam giác vuông cạnh huyền là cạnh lớn nhất)

=> AD > AB

Trong tam giác BAD có:

AD > AB (cmt)

=> Góc ABD > góc ADB (quan hệ giữa góc và cạnh trong tam giác)

hay Góc ABM > góc ADMMà góc ADM = góc CBM (câu b)

=> Góc ABM > góc CBM

 

 

image  
22 tháng 4 2024

Mà góc ADM = góc CBM (câu b)

=> Góc ABM > góc CBM

 

 

image