Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Xét \(\Delta ABC\) vuông tại A
\(Bc^2=Ab^2+AC^2\Rightarrow AB^2=BC^2-AC^2=10^2-8^2\text{}\Rightarrow AB=6cm\)
b) Xét \(\Delta ABM\) và \(\Delta CDM\) có:
\(AM=CM;\widehat{AMB}=\widehat{CMD};BM=DM\)
\(\Rightarrow\) \(\Delta ABM\) = \(\Delta CDM\)
\(\Rightarrow\) \(\widehat{BAM}=\widehat{DCM}=90^ohayAC\perp CD\)
c) Có : BC + DC > BD
mà BM = 2 BD ; DC = AB
\(\Rightarrow\) DC + BC > 2BM
A B C M
CM :
a) Áp dụng định lí Pi - ta - go vào t/giác ABC vuông tại A, ta có:
BC2 = AB2 + AC2
=> AB2 = BC2 - AC2 = 102 - 82 = 100 - 64 = 36
=> AB = 6 (cm)
b) Xét t/giác ABM và t/giác CDM
có: BM = MD (gt)
\(\widehat{AMB}=\widehat{CMD}\) (đối đỉnh)
AM = CM (gt)
=> t/giác ABM = t/giác CDM (c.g.c)
=> AB = CD (2 cạnh t/ứng)
=> \(\widehat{A}=\widehat{C}\) (2 góc t/ứng)
Mà \(\widehat{A}=90^0\) => \(\widehat{C}=90^0\) => AC \(\perp\)CD
c) Xét t/giác ACD
Ta có: BC + CD > BD (bất đẳng thức t/giác)
Mà CD = AB và 2BM = BD (vì BD = BM + MD và BM = MD)
=> AB + BC > 2BM
d) Ta có: AB < BC (6 cm < 10cm)
Mà AB = CD
=> CD > BC => \(\widehat{MBC}< \widehat{D}\) (quan hệ giữa cạnh và góc đối diện)
Mà \(\widehat{D}=\widehat{ABM}\) (vì t/giác ABM = t/giác CDM)
=> \(\widehat{CBM}< \widehat{ABM}\)
Cho tam giác ABC vuông tại A có AB<AC,đường trung tuyến AM. Trên tia đối của tia AM lấy điểm D sao cho M là trung điểm AD.
a) chứng minh tam giác MAB= tam giác MDC và DC song song với AB
b) gọi K là trung điểm AC. Chứng minh tam giác BKD cân
c) DK cắt BC tại O. Chứng minh CO=2/3CM
d) BK cắt AD tại N. Chứng minh MK vuông góc với NO
a) Xét ΔABC vuông tại A, có:
BC2=AB2+AC2 ( Định lý Py-Ta-Go)
(=) 102=AB2+82
(=) 100=AB2+64
(=) AB2= 36
(=) AB =6(cm) (do AB >0)
a) Áp dụng định lý Py ta go ta có :
BC2 =AB2 + AC2
=> AB2 = 100 - 64
=> AB = 6 cm
b) Xét ∆BAM và ∆DCM ta có :
BM = MD
AM = MC ( BM là trung tuyến)
BMA = CMD ( đối đỉnh)
=> ∆BAM = ∆DCM (c.g.c)
=> BAC = MCD = 90 độ
=> AC vuông góc với CD (dpcm)
=> AB = CD ( tg ứng )(dpcm)
a) \(AC^2=BC^2-AB^2\)
\(AC^2=10^2-6^2\)
\(AC^2=100-36\)
\(AC^2=64\)
\(AC=8\)
A D C B M
mình vẽ cái hinhf nó ko đc đẹp với chính xác đâu
b) Xét \(\Delta ABM\) và \(\Delta CDM\) ta có
BM = DM ( gt )
M là góc chung
AM = CM ( BN là đường trung tuyến )
Vậy \(\Delta AMB\) = \(\Delta CDM\) ( c.g.c )
\(\Rightarrow\) AB = CD ( 2 góc tương ứng )
a, \(\Delta BAM=\Delta DCM\left(c.g.c\right)\Rightarrow\hept{\begin{cases}AB=CD\\\widehat{BAM}=\widehat{DCM}\end{cases}}\)
Mà \(\widehat{BAM}=90^0\left(\widehat{BAC}=90^0\right)\Rightarrow\widehat{DCM}=90^0\Rightarrow AC\perp CD\)
b, MB = MD (gt) và \(M\in BD\Rightarrow\) M là trung điểm của BD \(\Rightarrow BD=2BM\)
Áp dụng bất đẳng thức tam giác vào \(\Delta BCD:CD+BC>BD\)
\(\Rightarrow AB+BC>2BM\)(vì AB = CD, BD = 2BM)
c, Tam giác ABC vuông tại A \(\Rightarrow AB< BC\) (trong tam giác vuông, cạnh huyền lớn nhất)
\(\Rightarrow CD< BC\Rightarrow\widehat{CBD}< \widehat{D}\) (quan hệ giữa góc và cạnh đối diên trong tam giác BCD)
\(\Delta BAM=\Delta DCM\left(cmt\right)\Rightarrow\widehat{ABM}=\widehat{D}\)
Do đó: \(\widehat{CBD}< \widehat{ABM}\Rightarrow\widehat{CBM}< \widehat{ABM}\)
Chúc bạn học tốt.
a) Xét ABM và CDM có:
MB=MD (gt)
góc BMA= góc DMC (đối đỉnh)
AM= CM (BM là đường trung tuyến)
=> ABM = CDM (c-g-c)
=> AB= CD (hai cạnh tương ứng)
=> Góc MCD= góc MAB (hai góc tương ứng)
=> Góc MCD= 90° hay góc ACD=90°
=> AC vuông góc CD.
b) Xét AMD và CMB có:
AM= CM (BM là đường trung tuyến)
góc AMD= góc CMB (đối đỉnh)
MB=MD (gt)
=> AMD = CMB(c-g-c)
=> AD= BC (hai cạnh tương ứng)
=> góc ADM= góc CBM (hai góc tương ứng)
Mà hai góc này ở vị trí so le trong.
=> AD//BC
c) Ta có: AD = BC.
Mà: BC > AB (trong tam giác vuông cạnh huyền là cạnh lớn nhất)
=> AD > AB
Trong tam giác BAD có:
AD > AB (cmt)
=> Góc ABD > góc ADB (quan hệ giữa góc và cạnh trong tam giác)
hay Góc ABM > góc ADMMà góc ADM = góc CBM (câu b)
=> Góc ABM > góc CBM
A B C D M
a, xét tam giác AMB và tam giác CMD có : MB = MD (gt)
AM = CM do AM là trung tuyến
góc AMB = góc CMD (đối đỉnh)
=> tam giác AMB = tam giác CMD (c-g-c)
=> AB = CD (đn)