K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
29 tháng 5 2020

\(A=\frac{3sina-2cosa}{12sin^3a+4cos^3a}=\frac{\frac{3sina}{sin^3a}-\frac{2cosa}{sin^3a}}{12+\frac{4cos^3a}{sin^3a}}=\frac{3.\frac{1}{sin^2a}-2cota.\frac{1}{sin^2a}}{12+4cot^3a}\)

\(=\frac{3\left(1+cot^2a\right)-2cota\left(1+cot^2a\right)}{12+4cot^3a}=\frac{3\left(1+3^2\right)-2.3.\left(1+3^2\right)}{12+4.3^3}=...\)

NV
8 tháng 5 2019

\(\frac{2sina+3cosa}{4sina-5cosa}=\frac{\frac{2sina}{cosa}+\frac{3cosa}{cosa}}{\frac{4sina}{cosa}-\frac{5cosa}{cosa}}=\frac{2tana+3}{4tana-5}=\frac{6+3}{12-5}=\frac{9}{7}\)

\(\frac{3sina-2cosa}{5sina+4cos^3a}=\frac{\frac{3sina}{cosa}-\frac{2cosa}{cosa}}{\frac{5sina}{cosa}+\frac{4cos^3a}{cosa}}=\frac{3tana-2}{5tana+4cos^2a}=\frac{3tana-2}{5tana+\frac{4}{1+tan^2a}}=\frac{9-2}{15+\frac{4}{10}}=\frac{5}{11}\)

NV
29 tháng 5 2020

\(tana-cota=3\Rightarrow\left(tana-cota\right)^2=9\)

\(\Rightarrow tan^2a+cot^2a-2=9\Rightarrow tan^2a+cot^2a=11\)

\(\frac{1}{tan^2a}+\frac{1}{cot^2a}=\frac{tan^2a+cot^2a}{\left(tana.cota\right)^2}=tan^2a+cot^2a=11\)

NV
10 tháng 4 2019

Câu 1:

\(sina+cosa=\frac{\sqrt{2}}{2}\Leftrightarrow\left(sina+cosa\right)^2=\frac{1}{2}\)

Chia 2 vế cho \(cos^2a:\) :

\(\left(\frac{sina+cosa}{cosa}\right)^2=\frac{1}{2}.\frac{1}{cos^2a}\Leftrightarrow\left(tana+1\right)^2=\frac{1}{2}\left(1+tan^2a\right)\)

\(\Leftrightarrow tan^2a+4tana+1=0\)

Tiếp tục chia 2 vế cho \(tana\): :

\(\Rightarrow tana+4+cota=0\Rightarrow tana+cota=-4\)

\(P=tan^2a+cot^2a=tan^2a+2+cot^2a-2=\left(tana+cota\right)^2-2=\left(-4\right)^2-2=14\)

NV
10 tháng 4 2019

Câu 2:

\(3cosa+2sina=2\Rightarrow cosa=\frac{2-2sina}{3}=\frac{2}{3}\left(1-sina\right)\)

Mặt khác ta luôn có: \(sin^2a+cos^2a=1\Leftrightarrow sin^2a+\frac{4}{9}\left(1-sina\right)^2=1\)

\(\Leftrightarrow9sin^2a+4sin^2a-8sina+4=9\)

\(\Leftrightarrow13sin^2a-8sina-5=0\Rightarrow\left[{}\begin{matrix}sina=1>0\left(l\right)\\sina=-\frac{5}{13}\end{matrix}\right.\)

8 tháng 6 2020

Hình như câu 2 b, chỗ cos phải là -0,8 chứ nhỉ

8 tháng 6 2020

vậy thì kết quả là
\(\sin2\alpha=-0.96\)
\(\)còn \(\cos\left(\alpha+\frac{\pi}{6}\right)\) thì đúng vì -(-0.8) mà sorry thiếu ngủ hôm qua -_-

NV
25 tháng 4 2019

Nhân cả tử và mẫu của phân số chứa tan với \(sina.cosa\)

\(A=\frac{sin^2x-cos^2x}{sin^2x+cos^2x}+cos2x=sin^2x-cos^2x+cos2x=-cos2x+cos2x=0\)

\(B=\frac{1+sin4a-cos4a}{1+sin4a+cos4a}=\frac{1+2sin2a.cos2a-\left(1-2sin^22a\right)}{1+2sin4a.cos4a+2cos^22a-1}\)

\(B=\frac{2sin2a\left(sin2a+cos2a\right)}{2cos2a\left(sin2a+cos2a\right)}=\frac{sin2a}{cos2a}=tan2a\)

\(C=\frac{3-4cos2a+2cos^22a-1}{3+4cos2a+2cos^22a-1}=\frac{2\left(cos^22a-2cos2a-1\right)}{2\left(cos^22a+2cos2a+1\right)}\)

\(C=\frac{\left(cos2a-1\right)^2}{\left(cos2a+1\right)^2}=\frac{\left(1-2sin^2a-1\right)^2}{\left(2cos^2a-1+1\right)^2}=\frac{sin^4a}{cos^4a}=tan^4a\)

\(D=\frac{sin^22a+4sin^4a-\left(2sina.cosa\right)^2}{4-4sin^2a-sin^22a}=\frac{sin^22a+4sin^4a-sin^22a}{4\left(1-sin^2a\right)-\left(2sina.cosa\right)^2}=\frac{4sin^4a}{4cos^2a-4sin^2a.cos^2a}\)

\(=\frac{sin^4a}{cos^2a\left(1-sin^2a\right)}=\frac{sin^4a}{cos^2a.cos^2a}=\frac{sin^4a}{cos^4a}=tan^4a\)

9 tháng 11 2019

Tham khảo:

\(E=\frac{cot\alpha+3tan\alpha}{2cot\alpha+tan\alpha}\\ E=\frac{1+3tan^2\alpha}{2+tan^2\alpha}\\ E=\frac{3\left(tan^2\alpha+1\right)-2}{1+\left(1+tan^2\alpha\right)}\\ E=\frac{\frac{3}{cos^2\alpha}-2}{\frac{1}{cos^2\alpha}+1}\\ E=\frac{3-2cos^2\alpha}{1+cos^2\alpha}\\ E=\frac{19}{13}\)

NV
8 tháng 5 2019

\(\left(sin^2a-1-2cos^2a\right)\frac{sin^2a}{cos^2a}=\left(-cos^2a-2cos^2a\right).\frac{sin^2a}{cos^2a}\)

\(=\frac{-3cos^2a.sin^2a}{cos^2a}=-3sin^2a\)

Đề sai hoặc bạn viết sai đề ở \(-2cos^2a\) trên tử số, phải là dấu "+" mới ra kết quả \(sin^2a\)

8 tháng 5 2019

Sorry, mk nhầm

NV
8 tháng 5 2019

\(=\left(2cos^2a-\left(1-sin^2a\right)\right).\frac{sin^2a}{cos^2a}=\left(2cos^2a-cos^2a\right)\frac{sin^2a}{cos^2a}\)

\(=\frac{cos^2a.sin^2a}{cos^2a}=sin^2a\)

Bài 1) Đơn giản các biểu thức sau (giả sử các biểu thức đều có nghĩa) :B= \(\sqrt{2}-\frac{1}{sin\left(x+2013\pi\right)}\cdot\sqrt{\frac{1}{1+cosx}+\frac{1}{1-cosx}}\) với \(\pi< x< 2\pi\) Bài 2) Tính các giá trị lượng giác còn lại của góc \(\alpha\) biết: a) \(\sin\alpha=\frac{1}{3}\)và 90 < \(\alpha\) < 180 b) \(\cos\alpha=\frac{-2}{3}\left(\pi< \text{​​}\alpha< \frac{3\pi}{2}\right)\) Bài 3) a) Tính các giá trị lượng giác còn...
Đọc tiếp

Bài 1) Đơn giản các biểu thức sau (giả sử các biểu thức đều có nghĩa) :B= \(\sqrt{2}-\frac{1}{sin\left(x+2013\pi\right)}\cdot\sqrt{\frac{1}{1+cosx}+\frac{1}{1-cosx}}\) với \(\pi< x< 2\pi\)

Bài 2) Tính các giá trị lượng giác còn lại của góc \(\alpha\) biết:
a) \(\sin\alpha=\frac{1}{3}\)và 90 < \(\alpha\) < 180

b) \(\cos\alpha=\frac{-2}{3}\left(\pi< \text{​​}\alpha< \frac{3\pi}{2}\right)\)

Bài 3) a) Tính các giá trị lượng giác còn lại của góc \(\alpha\), biết sin\(\alpha\) =\(\frac{1}{5}\) và tan\(\alpha\)+cot\(\alpha\) < 0
b) Cho \(3\sin^4\alpha-cos^4\alpha=\frac{1}{2}\). Tính giá trị biểu thức A=\(2sin^4\alpha-cos\alpha\)
Bài 4) a) Cho \(\cos\alpha=\frac{2}{3}\) Tính giá trị biểu thức: A=\(\frac{tan\alpha+3cot\alpha}{tan\alpha+cot\alpha}\)

b) Cho \(\tan\alpha=3\) Tính giá trị biểu thức: B=\(\frac{sin\alpha-cos\alpha}{sin^3\alpha+3cos^3\alpha+2sin\alpha}\)

c) Cho \(\cot\alpha=\sqrt{5}\) Tính giá trị biểu thức: C=\(sin^2\alpha-sin\alpha\cdot cos\alpha+cos^2\alpha\)

Bài 5) Chứng minh các hệ thức sau:

a) \(\frac{1+sin^4\alpha-cos^4\alpha}{1-sin^6\alpha-cos^6\alpha}=\frac{2}{3cos^2\alpha}\)

b) \(\frac{sin^2\alpha\left(1+cos\alpha\right)}{cos^2\alpha\left(1+sin\alpha\right)}=\frac{sin\alpha+tan\alpha}{cos\alpha+cot\alpha}\)

c) \(\frac{tan\alpha-tan\beta}{cot\alpha-cot\beta}=tan\alpha\cdot tan\beta\)

d) \(\frac{cos^2\alpha-sin^2\alpha}{cot^2\alpha-tan^2\alpha}=sin^2\alpha\times cos^2\alpha\)

Bài 6) Cho \(cos4\alpha+2=6sin^2\alpha\) với \(\frac{\pi}{2}< \alpha< \pi\). Tính \(\tan2\alpha\)

Bài 7) Cho \(\frac{1}{tan^2\alpha}+\frac{1}{cot^2\alpha}+\frac{1}{sin^2\alpha}+\frac{1}{\cos^2\alpha}=7\). Tính \(\cos4\alpha\)

Bài 8) Chứng minh các biểu thức sau:

a) \(\sin\alpha\left(1+cos2\alpha\right)=sin2\alpha cos\alpha\)

b) \(\frac{1+sin2\alpha-cos2\alpha}{1+sin2\alpha+cos2\alpha}=tan\alpha\)

c) \(tan\alpha-\frac{1}{tan\alpha}=-\frac{2}{tan2\alpha}\)

Bài 9) Chứng minh trong mọi tam giác ABC ta đều có:

a) sinA + sinB + sinC = \(4cos\frac{A}{2}cos\frac{B}{2}cos\frac{C}{2}\)

b) \(sin^2A+sin^2B+sin^2C=2\left(1+cosAcosBcosC\right)\)

Bài 10) Chứng minh trong mọi tam giác ABC không vuông ta đều có:

a) \(tanA+tanB+tanC=tanAtanBtanC\)

b) \(cotAcotB+cotBcotC+cotCcotA=1\)

Bài 11) Chứng minh trong mọi tam giác ABC ta đều có:

a) \(tan\frac{A}{2}tan\frac{B}{2}+tan\frac{B}{2}tan\frac{C}{2}+tan\frac{C}{2}tan\frac{A}{2}=1\)

b) \(cot\frac{A}{2}+cot\frac{B}{2}+cot\frac{C}{2}=cot\frac{A}{2}cot\frac{B}{2}cot\frac{C}{2}\)

1
30 tháng 4 2019

Help help. Tui thật sự ngu lượng giác huhu