Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(P=\left(\frac{\sqrt{x}\left(\sqrt{x}+1\right)}{\left(\sqrt{x}+1\right)\left(x+1\right)}+\frac{1}{x+1}\right).\frac{x+1}{\sqrt{x}-1}\)ĐK x>=0 x khác -1
=\(\frac{\sqrt{x}+1}{x+1}.\frac{x+1}{\sqrt{x}-1}=\frac{\sqrt{x}+1}{\sqrt{x}-1}\)
b/ x =\(\frac{2+\sqrt{3}}{2}=\frac{4+2\sqrt{3}}{4}=\frac{3+2\sqrt{3}+1}{4}=\frac{\left(\sqrt{3}+1\right)^2}{4}\)
\(\Rightarrow\sqrt{x}=\frac{\sqrt{3}+1}{2}\)
Em thay vào tính nhé!
c) với x>1
A=\(\frac{\sqrt{x}+1}{\sqrt{x}-1}.\sqrt{x}=\frac{x+\sqrt{x}}{\sqrt{x}-1}=\sqrt{x}+2+\frac{2}{\sqrt{x}-1}=\sqrt{x}-1+\frac{2}{\sqrt{x}-1}+3\)
Áp dụng bất đẳng thức Cosi
A\(\ge2\sqrt{2}+3\)
Xét dấu bằng xảy ra ....
Bài 2:
a: \(A=\left(5+\sqrt{5}\right)\left(\sqrt{5}-2\right)+\dfrac{\sqrt{5}\left(\sqrt{5}+1\right)}{4}-\dfrac{3\sqrt{5}\left(3-\sqrt{5}\right)}{4}\)
\(=-5+3\sqrt{5}+\dfrac{5+\sqrt{5}-9\sqrt{5}+15}{4}\)
\(=-5+3\sqrt{5}+5-2\sqrt{5}=\sqrt{5}\)
b: \(B=\left(\dfrac{x+\sqrt{x}}{\sqrt{x}\left(\sqrt{x}+3\right)}\right):\dfrac{x+3\sqrt{x}-2\left(\sqrt{x}+3\right)+6}{\sqrt{x}\left(\sqrt{x}+3\right)}\)
\(=\dfrac{\sqrt{x}\left(\sqrt{x}+1\right)}{x+3\sqrt{x}+6-2\sqrt{x}-6}=1\)
a) Ta có:
\(P=\left(\frac{2\sqrt{x}}{\sqrt{x}+3}+\frac{\sqrt{x}}{\sqrt{x}-3}-\frac{3x+3}{x-9}\right):\left(\frac{2\sqrt{x}-2}{\sqrt{x}-3}-1\right)\)
\(=\left(\frac{2\sqrt{x}\left(\sqrt{x-3}\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x-3}\right)}+\frac{\sqrt{x}\left(\sqrt{x}+3\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}-\frac{3x+3}{x-9}\right):\frac{2\sqrt{x}-2-\sqrt{x}+3}{\sqrt{x}-3}\)
\(=\left(\frac{2x-6}{x-9}+\frac{x+3\sqrt{x}}{x-9}-\frac{3x+3}{x-9}\right):\frac{\sqrt{x}+1}{\sqrt{x}-3}\)
\(=\frac{2x-6+x+3\sqrt{x}-3x-3}{x-9}.\frac{\sqrt{x}-3}{\sqrt{x}+1}\)
\(=\frac{3\sqrt{x}-9}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}.\frac{\sqrt{x}-3}{\sqrt{x}+3}\)
\(=\frac{3\left(\sqrt{x}-3\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}.\frac{\sqrt{x}-3}{\sqrt{x}+3}\)
\(=\frac{3\left(\sqrt{x}-3\right)}{\left(\sqrt{x}+3\right)^2}\)
b) \(P< \frac{-1}{2}\Rightarrow\frac{3\left(\sqrt{x}-3\right)}{\left(\sqrt{x}+3\right)^2}< \frac{-1}{2}\)
.....Chưa nghĩ ra....
c) Ta có: \(\frac{3\left(\sqrt{x}-3\right)}{\left(\sqrt{x}+3\right)^2}\ge0\)
Dấu "=" xảy ra \(\Leftrightarrow\sqrt{x}-3=0\Rightarrow x=9\)
Vậy Min P = 0 khi x =9.
k - kb với tớ nhia mn!
Bài 1:
a: Ta có: \(x^2-2\sqrt{5}x+5=0\)
\(\Leftrightarrow x-\sqrt{5}=0\)
hay \(x=\sqrt{5}\)
b: Ta có: \(\sqrt{x+3}=1\)
\(\Leftrightarrow x+3=1\)
hay x=-2
1, Với \(x\ge0,x\ne1\) ta có :
\(P=\left(\dfrac{1}{\sqrt{x}-1}+\dfrac{\sqrt{x}}{x-1}\right):\left(\dfrac{\sqrt{x}}{\sqrt{x}-1}-1\right)\)
\(=\dfrac{\sqrt{x}+1+\sqrt{x}}{x-1}:\dfrac{\sqrt{x}-\sqrt{x}+1}{\sqrt{x}-1}\)
\(=\dfrac{\left(2\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\)
\(=\dfrac{2\sqrt{x}+1}{\sqrt{x}+1}\)
2, Ta có \(P=\dfrac{7}{4}\)
\(\Rightarrow\dfrac{2\sqrt{x}+1}{\sqrt{x}+1}=\dfrac{7}{4}\)
\(\Leftrightarrow4\left(2\sqrt{x}+1\right)=7\left(\sqrt{x}+1\right)\)
\(\Leftrightarrow8\sqrt{x}+4=7\sqrt{x}=7\)
\(\Leftrightarrow\sqrt{x}=3\)
\(\Leftrightarrow x=9\left(tm\right)\)
1) Ta có: \(P=\left(\dfrac{1}{\sqrt{x}-1}+\dfrac{\sqrt{x}}{x-1}\right):\left(\dfrac{\sqrt{x}}{\sqrt{x}-1}-1\right)\)
\(=\left(\dfrac{\sqrt{x}+1+\sqrt{x}}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\right):\left(\dfrac{\sqrt{x}}{\sqrt{x}-1}-\dfrac{\sqrt{x}-1}{\sqrt{x}-1}\right)\)
\(=\dfrac{2\sqrt{x}+1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\cdot\dfrac{\sqrt{x}-1}{\sqrt{x}-\sqrt{x}+1}\)
\(=\dfrac{2\sqrt{x}+1}{\sqrt{x}+1}\)
2) Để \(P=\dfrac{7}{4}\) thì \(\dfrac{2\sqrt{x}+1}{\sqrt{x}+1}=\dfrac{7}{4}\)
\(\Leftrightarrow4\cdot\left(2\sqrt{x}+1\right)=7\left(\sqrt{x}+1\right)\)
\(\Leftrightarrow8\sqrt{x}+4=7\sqrt{x}+7\)
\(\Leftrightarrow8\sqrt{x}-7\sqrt{x}=7-4\)
\(\Leftrightarrow\sqrt{x}=3\)
hay x=9(nhận)
Vậy: Để \(P=\dfrac{7}{4}\) thì x=9
P = (\(\dfrac{1}{\sqrt{x}-1}\) - \(\dfrac{1}{\sqrt{x}}\)) : (\(\dfrac{\sqrt{x}+1}{\sqrt{x}-2}\) - \(\dfrac{\sqrt{x}+2}{\sqrt{x}-1}\)) với 0 < \(x\) ≠ 1; 4
P = \(\dfrac{\sqrt{x}-\left(\sqrt{x}-1\right)}{\sqrt{x}.\left(\sqrt{x}-1\right)}\): (\(\dfrac{\left(\sqrt{x}+1\right).\left(\sqrt{x}-1\right)-\left(\sqrt{x}+2\right).\left(\sqrt{x-2}\right)}{\left(\sqrt{x}-2\right).\left(\sqrt{x}-1\right)}\))
P = \(\dfrac{\sqrt{x}-\sqrt{x}+1}{\sqrt{x}.\left(\sqrt{x}-1\right)}\): \(\dfrac{x-1-\left(x-4\right)}{\left(\sqrt{x}-2\right).\left(\sqrt{x}-1\right)}\)
P = \(\dfrac{1}{\sqrt{x}.\left(\sqrt{x}-1\right)}\) : \(\dfrac{3}{\left(\sqrt{x}-2\right).\left(\sqrt{x}-1\right)}\)
P = \(\dfrac{1}{\sqrt{x}.\left(\sqrt{x}-1\right)}\) \(\times\) \(\dfrac{\left(\sqrt{x}-2\right).\left(\sqrt{x}-1\right)}{3}\)
P = \(\dfrac{\sqrt{x}-2}{3.\sqrt{x}}\)
P = \(\dfrac{\sqrt{x}.\left(\sqrt{x}-2\right)}{3x}\)
b, P = \(\dfrac{1}{4}\)
⇒ \(\dfrac{\sqrt{x}.\left(\sqrt{x}-2\right)}{3x}\) = \(\dfrac{1}{4}\)
⇒4\(x\) - 8\(\sqrt{x}\) = 3\(x\)
⇒ 4\(x\) - 8\(\sqrt{x}\) - 3\(x\) = 0
\(x\) - 8\(\sqrt{x}\) = 0
\(\sqrt{x}\).(\(\sqrt{x}\) - 8) = 0
\(\left[{}\begin{matrix}x=0\\\sqrt{x}=8\end{matrix}\right.\)
\(\left[{}\begin{matrix}x=0\\x=64\end{matrix}\right.\)
\(x=0\) (loại)
\(x\) = 64
a)
\(\dfrac{\left(\sqrt{x^2+4}-2\right)\left(\sqrt{x^2+4}-2\right)\left(x+\sqrt{x}+1\right)\sqrt{x-2\sqrt{x}+1}}{x\left(x\sqrt{x}-1\right)}\\=\dfrac{\left(\left(\sqrt{x^2+4}\right)^2-4\right)\left(\left(x+\sqrt{x}+1\right)\sqrt{\left(x-1\right)^2}\right)}{x\left(x\sqrt{x}-1\right)}\\ =\dfrac{\left(x^2+4-4\right)\left(\left(x+\sqrt{x}+1\right)\left(x-1\right)\right)}{x\left(x\sqrt{x}-1\right)}\\ =\dfrac{x^2\left(x^3-1\right)}{x\left(x\sqrt{x}-1\right)}=x^2\sqrt{x}\)
b)
\(\left(\dfrac{\sqrt{a}-2}{\sqrt{a}+2}-\dfrac{\sqrt{a}+2}{\sqrt{a}-2}\right)\left(\sqrt{a}-\dfrac{4}{\sqrt{a}}\right)\\ =\left(\dfrac{\left(\sqrt{a}-2\right)^2}{\left(\sqrt{a}+2\right)\left(\sqrt{a}-2\right)}-\dfrac{\left(\sqrt{a}+2\right)^2}{\left(\sqrt{a}+2\right)\left(\sqrt{a}-2\right)}\right)\left(\dfrac{a}{\sqrt{a}}-\dfrac{4}{\sqrt{a}}\right)\\ =\left(\dfrac{a-4\sqrt{a}+4-a-4\sqrt{a}-4}{a-4}\right)\left(\dfrac{a-4}{\sqrt{a}}\right)\\ =\dfrac{-8\sqrt{a}}{a-4}\cdot\dfrac{a-4}{\sqrt{a}}=-8\)
c)
\(\left(\dfrac{\left(\sqrt{a}-1\right)}{\left(\sqrt{a}+1\right)}+\dfrac{\left(\sqrt{a}+1\right)}{\left(\sqrt{a}-1\right)}\right)\left(1-\dfrac{1}{\sqrt{a}}\right)\\ =\left(\dfrac{\left(\sqrt{a}-1\right)^2}{\left(\sqrt{a}+1\right)\left(\sqrt{a}-1\right)}+\dfrac{\left(\sqrt{a}+1\right)^2}{\left(\sqrt{a}+1\right)\left(\sqrt{a}-1\right)}\right)\left(\dfrac{\sqrt{a}}{\sqrt{a}}-\dfrac{1}{\sqrt{a}}\right)\\ =\left(\dfrac{a-2\sqrt{a}+1+a+2\sqrt{a}+1}{\left(\sqrt{a}+1\right)\left(\sqrt{a}-1\right)}\right)\left(\dfrac{\sqrt{a}-1}{\sqrt{a}}\right)\\ =\dfrac{2a+2}{a-1}\cdot\dfrac{\sqrt{a}-1}{\sqrt{a}}\\ =\dfrac{-2\left(a+1\right)}{a+1}\cdot\dfrac{\sqrt{a}-1}{\sqrt{a}}\\ =\dfrac{-2\left(\sqrt{a}-1\right)}{\sqrt{a}}\)
d)
\(\dfrac{x^2-\sqrt{x}}{x+\sqrt{x}+1}-\dfrac{x^2+\sqrt{x}}{x-\sqrt{x}+1}+x+1\\ =\dfrac{\sqrt{x}\left(\sqrt{x}^3-1\right)}{x+\sqrt{x}+1}-\dfrac{\sqrt{x}\left(\sqrt{x}^3+1\right)}{x-\sqrt{x}+1}+x+1\\ =\dfrac{\sqrt{x}\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}{x+\sqrt{x}+1}-\dfrac{\sqrt{x}\left(\sqrt{x}+1\right)\left(x-\sqrt{x}+1\right)}{x-\sqrt{x}+1}+x+1\\ =\sqrt{x}\left(\sqrt{x}-1\right)-\sqrt{x}\left(\sqrt{x}+1\right)+x+1\\ =x-\sqrt{x}-x-\sqrt{x}+x+1\\ =x-2\sqrt{x}+1\\ =\left(x-1\right)^2\)
a)
\(P=\left(\dfrac{1}{\sqrt{x}-1}-\dfrac{1}{\sqrt{x}}\right):\left(\dfrac{\sqrt{x}+1}{\sqrt{x}-2}-\dfrac{\sqrt{x}+2}{\sqrt{x}-1}\right)\\ P=\dfrac{1}{\sqrt{x}\left(\sqrt{x}-1\right)}:\dfrac{1}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-1\right)}\\ P=\dfrac{\left(\sqrt{x}-2\right)\left(\sqrt{x}-1\right)}{\sqrt{x}\left(\sqrt{x}-1\right)}=\dfrac{\sqrt{x}-2}{\sqrt{x}}\)
b)
\(Q< 0\Leftrightarrow\dfrac{\sqrt{x}-2}{\sqrt{x}}< 0\\ \Leftrightarrow\left\{{}\begin{matrix}\sqrt{x}>0\\\sqrt{x}-2< 0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x>0\\x< 4\end{matrix}\right.\\ \Leftrightarrow0< x< 4\)