Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét ΔABD có \(\widehat{B}>90^0\)
nen AD là cạnh lớn nhất
=>AB<AD(1)
XétΔADC có \(\widehat{ADC}>90^0\)
nên AC là cạnh lớn nhất
=>AD<AC(2)
Từ (1) và (2) suy ra AB<AD<AC
Hình bạn tự vẽ nha!
a) Vì \(\Delta ABC\) cân tại \(A\left(gt\right)\)
=> \(AB=AC.\)
Xét 2 \(\Delta\) vuông \(ABD\) và \(ACE\) có:
\(\widehat{ADB}=\widehat{AEC}=90^0\left(gt\right)\)
\(AB=AC\left(cmt\right)\)
\(\widehat{A}\) chung
=> \(\Delta ABD=\Delta ACE\) (cạnh góc vuông - góc nhọn kề)
=> \(AD=AE\) (2 cạnh tương ứng).
b) Theo câu a) ta có \(\Delta ABD=\Delta ACE.\)
=> \(\widehat{ABD}=\widehat{ACE}\) (2 góc tương ứng).
Hay \(\widehat{ABI}=\widehat{ACI}.\)
Xét 2 \(\Delta\) \(ABI\) và \(ACI\) có:
\(AB=AC\left(cmt\right)\)
\(\widehat{ABI}=\widehat{ACI}\left(cmt\right)\)
Cạnh AI chung
=> \(\Delta ABI=\Delta ACI\left(c-g-c\right)\)
=> \(\widehat{BAI}=\widehat{CAI}\) (2 góc tương ứng).
=> \(AI\) là tia phân giác của \(\widehat{BAC}\left(1\right).\)
Câu c) mình đang nghĩ nhưng câu d) thì mình làm được.
d) Xét 2 \(\Delta\) \(ABM\) và \(ACM\) có:
\(AB=AC\left(cmt\right)\)
\(BM=CM\) (vì M là trung điểm của \(BC\))
Cạnh AM chung
=> \(\Delta ABM=\Delta ACM\left(c-c-c\right)\)
=> \(\widehat{BAM}=\widehat{CAM}\) (2 góc tương ứng).
=> \(AM\) là tia phân giác của \(\widehat{BAC}\left(2\right).\)
Từ \(\left(1\right)và\left(2\right)\Rightarrow AI,AM\) đều là các tia phân giác của \(\widehat{BAC}.\)
=> 3 điểm \(A,I,M\) thẳng hàng (đpcm).
Chúc bạn học tốt!