K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 8 2019

Ta có : \(\dfrac{MN}{BC} = \dfrac{AK}{AH} \)

Gợi MN = \(x\) , ta có :

\(\dfrac{x}{a} = \dfrac{h-x}{h}\)

Từ đó \(\Rightarrow\) \(hx = ah - ax\)

\(\Leftrightarrow\) \(x = \dfrac{ah}{a+h}\)

Ta có : MP = MN\(\sqrt{2}\)

\(\Rightarrow\) MP = \(\dfrac{\sqrt{2}ah}{a+h}\)

31 tháng 1 2019

b/ Gọi G là giao điểm của AB và DF

Ta có :

  Góc ACQ = góc AHQ ( t/g ACHQ n.t )

  Góc ACQ = góc ADF ( 2 góc n.t chắn cung AF )

=> Góc AHQ = góc ADF

Mà 2 góc ở vị trí đồng vị 

Nên \(HQ//DF\)

Mặc khác \(HQ\perp AB\)tại Q

=> \(DF\perp AB\)tại G

Xét tứ giác GBNF ta có:\(B\widehat{G}F+B\widehat{N}F=180^0\)

=> Tứ giác GBNF nội tiếp =>\(N\widehat{G}F=N\widehat{B}F\)

Mà \(N\widehat{B}F=C\widehat{A}F\)( tứ giác ACBF n.t (O))

Nên \(N\widehat{G}F=C\widehat{A}F\left(1\right)\)

Xét tứ giác GMAF ta có: \(A\widehat{M}F=A\widehat{G}F\left(=90^0\right)\)

=> Tứ giác GMAF n.t =>\(M\widehat{A}F+M\widehat{G}F=180^0\left(2\right)\)

(1) và (2) => \(N\widehat{G}F+M\widehat{G}F=180^0\)

=> \(\overline{M,G,N}\)

Mà G là giao điểm của AB và DF

Nên MN,AB,DF đồng quy tại G

MN là đường thẳng simson nha bạn

7 tháng 7 2020

khong biet

a nha

15 tháng 9 2017

vào câu hỏi tương tự

15 tháng 9 2017

Bui Duc Viet tham khảo nhé

Gọi diện tích h.c.n MNPQ là S1, diện tích tam giác ABC là S2=a 
Ta có S1/S2 = PQ.QM//AH.BC (*) 
Do PQ//BC => PQ/BC=AQ/AB 
Do QM//AH => QM/AH=BQ/AB 
(*) => S1/S2 = AQ.BQ/AB^2 
=> S1=a.AQ.BQ/AB^2 
=> S1 lớn nhất khi AQ.BQ lớn nhất 
Ta có AQ.BQ<= [(AQ+BQ)/2]^2=(AB/2)^2 
AQ.BQ lớn nhất khi AQ=BQ 
=> Diện tích hình chữ nhật MNPQ có giá trị lớn nhất khi PQ đi qua trung điểm của đường cao AH.