K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 6 2022

a) Ta có : \(AB^2+AC^2=6^2+8^2=100\)

               \(BC^2=10^2=100\)

\(\Rightarrow AB^2+AC^2=BC^2\)

\(\Rightarrow\bigtriangleup ABC\) vuông tại \(A\)  (đpcm)

b) Từ \(AB\cdot AC=AH\cdot BC\)

\(\Rightarrow6\cdot8=AH\cdot10\)

\(\Rightarrow AH=4,8\)

c) Từ \(AB^2=BC\cdot BH\)

\(\Rightarrow6^2=10\cdot HB\)

\(\Rightarrow HB=3,6\)

Từ \(HB+HC=BC\)

\(\Rightarrow3,6+HC=10\)

\(\Rightarrow HC=6,4\)

\(S_{\bigtriangleup ABC}=\dfrac{1}{2}AB\cdot AC\)  .

 

 

 

 

17 tháng 8 2019

ABC△ABC vuông tại A , AHBCAH⊥BC , HEABHE⊥AB , HFAC(EHB,FAC)HF⊥AC(E∈HB,F∈AC) . Chứng minh rằng : AE .AB = AE . AC ( sửa đề : AE . AB = AC . AF )

(Tự vẽ hình )

Xét \(\bigtriangleup{ AHB}\) vuông tại H có \(HE \perp AB\)

Áp dụng hệ thức \(b^2 = a.b'\)

\(\Leftrightarrow\) \(AH^2 = AB . AE \) (1)

Xét \(\bigtriangleup{AHC}\) vuông tại H có \(HF \perp AC \)

Áp dụng hệ thức \(c^2=a.c'\)

\(\Leftrightarrow\) \(AH^2 = AC .AF\) (2)

Từ (1) và (2) \(\Rightarrow\) AB . AE = AC . AF (đpcm)

17 tháng 8 2019

Nguyễn Huyền Trâm mơn bn

21 tháng 9 2019

Bài 2:

Xét \(\Delta ABC\)có \(\widehat{A}=90^o\)\(AH\perp BC\)

\(\Rightarrow AH^2=HB.HC\)(Hệ thức lượng)

\(AH^2=25.64\)

\(AH=\sqrt{1600}=40cm\)

Xét \(\Delta ABH\)\(\widehat{H}=90^o\)

\(\Rightarrow\tan B=\frac{AH}{BH}\)\(=\frac{40}{25}=\frac{8}{5}\)

\(\Rightarrow\widehat{B}\approx58^o\)

Xét \(\Delta ABC\)có \(\widehat{A}=90^o\)

\(\Rightarrow\widehat{B}+\widehat{C}=90^o\)

\(58^o+\widehat{C}=90^o\)

\(\Rightarrow\widehat{C}\approx90^o-58^o\)

\(\widehat{C}\approx32^o\)

26 tháng 1 2018

mình hướng dẫn nhé

b) ta có: \(\widehat{ADB}\) là góc nội tiếp chắn nửa đường tròn 

\(\Rightarrow\widehat{ADB}=90^0\)

\(\Rightarrow AD\perp BC\)  là đường cao đồng thời là đường phân giác

\(\Rightarrow\widehat{BAD}=\widehat{CAD}=\frac{1}{2}\widehat{BAC}\)

ta lại có \(\widehat{DAE}=\widehat{EBD}\) cùng chắn cung \(DE\) nhỏ

\(\Rightarrow\widehat{CBE}=\frac{1}{2}\widehat{BAC}\)

26 tháng 1 2018

Ai làm được câu a chỉ mình với @@

a: Xét ΔABC có \(BC^2=AB^2+AC^2\)

nên ΔABC vuông tại A

Xét ΔABC vuông tại A có \(\sin B=\dfrac{AC}{BC}=\dfrac{4}{5}\)

nên \(\widehat{B}=53^0\)

=>\(\widehat{C}=37^0\)

Xét ΔABC vuông tại A có AH là đường cao

nên \(AH\cdot BC=AB\cdot AC\)

hay AH=4,8(cm)

20 tháng 5 2019

bai-98-trang-122-sach-bai-tap-toan-9-tap-1-3.PNG (292×165)

a. Ta có: AB2 = 62 = 36

AC2 = 4,52 = 20,25

BC2 = 7,52 = 56,25

Vì AB2 + AC2 = 36 + 20,25 = 56,25 = BC2 nên tam giác ABC vuông tại A (theo định lí đảo Pi-ta-go)

Kẻ AH ⊥ BC

Ta có: AH.BC = AB.AC

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9 b. Tam giác ABC và tam giác MBC có chung cạnh đáy BC, đồng thời SABC = SMBC nên khoảng cách từ M đến BC bằng khoảng cách từ A đến BC. Vậy M thay đổi cách BC một khoảng bằng AH nên M nằm trên hai đường thẳng x và y song song với BC cách BC một khoảng bằng AH.
24 tháng 8 2019

Ta có : \(\dfrac{MN}{BC} = \dfrac{AK}{AH} \)

Gợi MN = \(x\) , ta có :

\(\dfrac{x}{a} = \dfrac{h-x}{h}\)

Từ đó \(\Rightarrow\) \(hx = ah - ax\)

\(\Leftrightarrow\) \(x = \dfrac{ah}{a+h}\)

Ta có : MP = MN\(\sqrt{2}\)

\(\Rightarrow\) MP = \(\dfrac{\sqrt{2}ah}{a+h}\)

24 tháng 7 2018

bạn tham khảo : https://hoc24.vn/hoi-dap/question/477209.html

8 tháng 8 2019
https://i.imgur.com/fbnvqRt.jpg