K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 11 2016

chữ nhỏ thế

to ra được không

tk nhé@@@@@@@@@@@@@@@@@@@@@

LOL

7 tháng 11 2016

chữ thế mà ko đọc đc à bạn

2 tháng 11 2017

Xét a1^5 - a1 = a1.(a1^4-1) = a1.(a1^2-1).(a1^2+1) = a1.(a1-1).(a1+1).(a1^2-4+5)

= a1.(a1-1).(a1+1).(a1-2).(a1+2) + 5.a1.(a1-1).(a1+1)

Ta thấy a1-2;a1-1;a1;a1+1;a1+2 là 5 số tự nhiên liên tiếp nên có 1 số chia hết cho 2 , 1 số chia hết cho 3 , 1 số chia hết cho 5

=> a1.(a1-1).(a1+1).(a1-2).(a1+2) chia hết cho 30 [vì (2;3;5)=1] (1)

Lại có a1-1;a1;a1+1 là 3 số tự nhiên liên tiếp nên có 1 số chia hết cho 2, 1 số chia hết cho 3

=> a1.(a1-1).(a1+1) chia hết cho 6 [vì(2;3)=1]

=>5.a1.(a1-1).(a1+1) chia hết cho 30(2)

Từ (1) và (2) => a1^5-a1 chia hết cho 30

Tương tự a2^5-a2 chia hêt cho 30

......

a2013^5-a2013 chia hết cho 30

=> M-N chia hết cho 30 

Mà N chia hết cho 30 nên M chia hết cho 30

2 tháng 11 2017

cm M chia hết cho N á

Bài này làm r mà quên mất

29 tháng 8 2015

Ta có   \(1^2+2^2+\cdots+2014^2=\text{2725088015}=a_1^2+\left(2a_2\right)^2+\cdots+\left(2014a_{2014}^2\right)^2\).

Suy ra \(\left(a_1^2-1\right)+2^2\left(a_2^2-1\right)+\cdots+2014^2\left(a_{2014}^2-1\right)=0\).

Vì các số \(a_1,\ldots,a_{2014}\)  nguyên khác không nên \(a_1^2,\ldots,a_{2014}^2\) là các số nguyên dương, do đó đều lớn hơn hoặc bằng 1. Vậy ta có \(a_1^2=a_2^2=\cdots=a_{2014}^2=1\). Điều này suy ra với mỗi \(i=1,\ldots,2014\) thì \(a_i\)  nhận tùy ý một trong hai giá trị là \(\pm1\). Vì tổng đã cho \(P=a_1+a_2+\cdots+a_{2014}\) , là số chẵn (do là tổng của 2014 số lẻ) do đó có thể nhận giá trị nguyên \(k\)  bất kì với \(k\in\left\{-2014,-2012,\ldots,-2,0,2,4,\ldots,2014\right\}.\)

 

23 tháng 11 2017

Bạn áp dụng cái này là được: \(a^3-a⋮3\)\(\forall a\in Z\)

10 tháng 7 2015

Ta có: 

\(\left(a_n-\frac{1}{2010}\right)^2\ge0\Rightarrow a_n^2-\frac{2}{2010}a_n+\frac{1}{2010^2}\ge0\)

\(\Rightarrow a_n^2\ge\frac{2}{2010}a_n-\frac{1}{2010^2}\)

\(\Rightarrow a_1^2+a_2^2+...+a_{2010}^2\ge\frac{2}{2010}\left(a_1+a_2+...+a_{2010}\right)-2010.\frac{1}{2010^2}\)

\(=\frac{2}{2010}-\frac{1}{2010}=\frac{1}{2010}\)

Dấu "=" xảy ra khi \(a_1=a_2=...=a_n=\frac{1}{2010}\)