Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(ab+bc+ca=1\)\(\Rightarrow\)\(\hept{\begin{cases}a^2b^2+b^2c^2+c^2a^2=1-2abc\left(a+b+c\right)\\\left(a+b+c\right)^2-2=a^2+b^2+c^2\end{cases}}\)
\(A=\sqrt{\left(a^2+1\right)\left(b^2+1\right)\left(c^2+1\right)}=\sqrt{a^2b^2c^2+a^2b^2+b^2c^2+c^2a^2+a^2+b^2+c^2+1}\)
\(A=\sqrt{a^2b^2c^2-2abc\left(a+b+c\right)+\left(a+b+c\right)^2}\)
\(A=\sqrt{\left(abc-a-b-c\right)^2}=\left|abc-a-b-c\right|\)
Do a, b, c là các số hữu tỉ nên \(\left|abc-a-b-c\right|\) là số hữu tỉ
b) \(B=\sqrt{2+\sqrt{2+\sqrt{2+...+\sqrt{2}}}}>\sqrt{1+\sqrt{1+\sqrt{1+...+\sqrt{1}}}}=1\)
\(B< \sqrt{2+\sqrt{2+\sqrt{2+...+\sqrt{4}}}}=\sqrt{2+\sqrt{2+\sqrt{2+...+\sqrt{2+2}}}}=\sqrt{2+2}=2\)
=> \(1< B< 2\) B không là số tự nhiên
c) câu này có ng làm r ib mk gửi link
à chỗ câu b) mình nhầm tí nhé
\(B=\sqrt{2+\sqrt{2+\sqrt{2+...+\sqrt{2}}}}>\sqrt{1+\sqrt{1+\sqrt{1+...+\sqrt{1}}}}>1\)
Sửa dấu "=" thành ">" hộ mình
a) Ta có: \(\left(\sqrt{14}+\sqrt{6}\right)\left(\sqrt{5}-\sqrt{21}\right)\)
\(=\sqrt{70}-7\sqrt{6}+\sqrt{30}-3\sqrt{14}\)
a) \(A=\left(\sqrt{57}+3\sqrt{6}+\sqrt{38}+6\right)\left(\sqrt{57}-3\sqrt{6}-\sqrt{38}+6\right)\)\(\Leftrightarrow A=\left[\left(\sqrt{57}+6\right)+\left(3\sqrt{6}+\sqrt{38}\right)\right]\left[\left(\sqrt{57}+6\right)-\left(3\sqrt{6}+\sqrt{38}\right)\right]\)\(\Leftrightarrow A=\left(\sqrt{57}+6\right)^2-\left(3\sqrt{6}+\sqrt{38}\right)^2\)
\(\Leftrightarrow A=57+12\sqrt{57}+36-54-12\sqrt{57}-38\)
\(\Leftrightarrow A=1\)
b) \(B=\dfrac{2\sqrt{3+\sqrt{5-\sqrt{13+\sqrt{48}}}}}{\sqrt{6}+\sqrt{2}}\)\(\Leftrightarrow B=\dfrac{2\sqrt{3+\sqrt{5-\sqrt{13+4\sqrt{3}}}}}{\sqrt{6}+\sqrt{2}}\)\(\Leftrightarrow B=\dfrac{2\sqrt{3+\sqrt{5-\sqrt{1+4\sqrt{3}+\left(2\sqrt{3}\right)^2}}}}{\sqrt{6}+\sqrt{2}}\)\(\Leftrightarrow B=\dfrac{2\sqrt{3+\sqrt{5-\sqrt{\left(1+2\sqrt{3}\right)^2}}}}{\sqrt{6}+\sqrt{2}}\)
\(\Leftrightarrow B=\dfrac{2\sqrt{3+\sqrt{4-2\sqrt{3}}}}{\sqrt{6}+\sqrt{2}}\)
\(\Leftrightarrow B=\dfrac{2\sqrt{3+\sqrt{\left(\sqrt{3}-1\right)^2}}}{\sqrt{6}+\sqrt{2}}\)
\(\Leftrightarrow B=\dfrac{2\sqrt{2+\sqrt{3}}}{\sqrt{6}+\sqrt{2}}\)
\(\Leftrightarrow B=\dfrac{\sqrt{8+4\sqrt{3}}}{\sqrt{6}+\sqrt{2}}\)
\(\Leftrightarrow B=\dfrac{\sqrt{\left(\sqrt{6}+\sqrt{2}\right)^2}}{\sqrt{6}+\sqrt{2}}\)
\(\Leftrightarrow B=\dfrac{\sqrt{6}+\sqrt{2}}{\sqrt{6}+\sqrt{2}}=1\)
c)\(C=\sqrt{\sqrt{5}-\sqrt{3-\sqrt{29-12\sqrt{5}}}}\)
\(\Leftrightarrow C=\sqrt{\sqrt{5}-\sqrt{3-\sqrt{3^2-2\times3\times2\sqrt{5}+\left(2\sqrt{5}\right)^2}}}\)
\(\Leftrightarrow C=\sqrt{\sqrt{5}-\sqrt{3-\sqrt{\left(2\sqrt{5}-3\right)^2}}}\)
\(\Leftrightarrow C=\sqrt{\sqrt{5}-\sqrt{6-2\sqrt{5}}}\)
\(\Leftrightarrow C=\sqrt{\sqrt{5}-\sqrt{\left(\sqrt{5}-1\right)^2}}\)
\(\Leftrightarrow C=\sqrt{\sqrt{5}-\sqrt{5}+1}=\sqrt{1}=1\)
\(a)\)\(\sqrt{15-6\sqrt{6}}+\sqrt{33-12\sqrt{6}}\)
\(=\)\(\sqrt{6-6\sqrt{6}+9}+\sqrt{24-12\sqrt{6}+9}\)
\(=\)\(\sqrt{\left(\sqrt{6}+3\right)}+\sqrt{\left(\sqrt{24}+3\right)}\)
\(=\)\(\left|\sqrt{6}+3\right|+\left|\sqrt{24}+3\right|\)
\(=\)\(\sqrt{6}+3+\sqrt{24}+3\)
\(=\)\(\sqrt{6}\left(1+\sqrt{4}\right)+9\)
\(=\)\(3\sqrt{6}+9\)
Chúc bạn học tốt ~
\(b)\)\(\sqrt{\left(2-\sqrt{3}\right)^2}+\sqrt{4-2\sqrt{3}}\)
\(=\)\(\left|2-\sqrt{3}\right|+\sqrt{3-2\sqrt{3}+1}\)
\(=\)\(2-\sqrt{3}+\sqrt{\left(\sqrt{3}-1\right)^2}\) ( vì \(2=\sqrt{4}>\sqrt{3}\) )
\(=\)\(2-\sqrt{3}+\left|\sqrt{3}-1\right|\)
\(=\)\(2-\sqrt{3}+\sqrt{3}-1\) ( vì \(\sqrt{3}>\sqrt{1}=1\) )
\(=\)\(1\)
Chúc bạn học tốt ~
PS : mới lớp 8 sai thì thông cảm >.<
Ta có:
\(A=\sqrt{2+\sqrt{2+\sqrt{2+...+\sqrt{2}}}}\)\(>\sqrt{1}=1\)
\(A=\sqrt{2+\sqrt{2+\sqrt{2+...+\sqrt{2}}}}\)\(< \sqrt{2+\sqrt{2+\sqrt{2+...\sqrt{4}}}}=2\)
Vậy A không phải số tự nhiên.
Nếu đúng cho nhé.
Có \(A>\sqrt{6}\)
Có \(\sqrt{6}< \sqrt{9}=3\) \(\Rightarrow\sqrt{6+\sqrt{6}}< \sqrt{6+3}=3\)\(\Rightarrow A=\sqrt{6+\sqrt{6+...+\sqrt{6}}}< 3\)
\(\Rightarrow\sqrt{6}< A< 3\)
\(\Rightarrow A\notin N\)