K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 2 2021

Ta có: \(\frac{1}{a}+\frac{1}{b}+\frac{4}{c}\ge\frac{4}{a+b}+\frac{4}{c}=4\left(\frac{1}{a+b}+\frac{1}{c}\right)\ge4\frac{4}{a+b+c}=4.\frac{4}{6}=\frac{8}{3}\)

\(\Rightarrow-\left(\frac{1}{a}+\frac{1}{b}+\frac{4}{c}\right)\le\frac{-8}{3}\)

\(\Rightarrow M=1-\frac{1}{a}+1-\frac{1}{b}+1-\frac{4}{c}\)

\(=3-\left(\frac{1}{a}+\frac{1}{b}+\frac{4}{c}\right)\le3-\frac{8}{3}=\frac{1}{3}\)

\(\Rightarrow M\le\frac{1}{3}\)

Dấu '=' xảy ra \(\Leftrightarrow\hept{\begin{cases}a=b\\a+b=c\\a+b+c=6\end{cases}\Leftrightarrow\hept{\begin{cases}a=b=\frac{3}{2}\\c=3\end{cases}}}\)

Vậy GTLN của M là 1/3

1 tháng 12 2017

Với 2 số x,y > 0 Theo Cauchy ta có: \(\frac{x+y}{2}\ge\sqrt{xy}\Rightarrow\frac{\left(x+y\right)^2}{4}\ge xy\Rightarrow\frac{x+y}{xy}\ge\frac{4}{x+y}\)

\(\Rightarrow\frac{1}{x}+\frac{1}{y}\ge\frac{4}{x+y}^{\left(1\right)}\)

\(P=\frac{a-1}{a}+\frac{b-1}{b}+\frac{c-4}{c}=1-\frac{1}{a}+1-\frac{1}{b}+1-\frac{4}{c}\)

\(=3-\left(\frac{1}{a}+\frac{1}{b}+\frac{4}{c}\right)\)

Áp dụng (1) ta có:\(\frac{1}{a}+\frac{1}{b}+\frac{4}{c}\ge\frac{4}{a+b}+\frac{4}{c}=4\left(\frac{1}{a+b}+\frac{1}{c}\right)\ge4\cdot\frac{4}{a+b+c}=\frac{16}{6}=\frac{8}{3}\)

\(\Rightarrow3-\left(\frac{1}{a}+\frac{1}{b}+\frac{4}{c}\right)\le3-\frac{8}{3}=\frac{1}{3}\)

Đẳng thức xảy ra khi a=b và (a+b)=c hay a=b=1,5 và c=3.

8 tháng 12 2017

\(P=\frac{a-1}{a}+\frac{b-1}{b}+\frac{c-4}{c}=\frac{a}{a}-\frac{1}{a}+\frac{b}{b}-\frac{1}{b}+\frac{c}{c}-\frac{4}{c}\)

=> \(P=3-\left(\frac{1}{a}+\frac{1}{b}+\frac{4}{c}\right)\)(1)

Ta lại có: \(\left(\sqrt{a}-\sqrt{b}\right)^2\ge0< =>a+b-2\sqrt{ab}\ge0=>\frac{\left(a+b\right)^2}{4}\ge ab\)

<=> \(\frac{a+b}{ab}\ge\frac{4}{a+b}< =>\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}\)

=> \(\frac{1}{a}+\frac{1}{b}+\frac{4}{c}\ge\frac{4}{a+b}+\frac{4}{c}=4\left(\frac{1}{a+b}+\frac{1}{c}\right)\ge4\left(\frac{4}{a+b+c}\right)\)

=> \(\frac{1}{a}+\frac{1}{b}+\frac{4}{c}\ge4\left(\frac{4}{6}\right)=\frac{16}{6}=\frac{8}{3}\)(Do a+b+c=6 theo gt)

Thay vào (1), suy ra:

\(P=3-\left(\frac{1}{a}+\frac{1}{b}+\frac{4}{c}\right)\le3-\frac{8}{3}=\frac{1}{3}\)

=> GTLL của P là: \(P=\frac{1}{3}\)

Dấu '=' xảy ra khi a=b và a+b=c => c=3; a=b=1,5

24 tháng 12 2019

a) \(\frac{a+b}{2}\ge\sqrt{ab}\)

\(\Leftrightarrow\frac{a^2+2ab+b^2}{4}-ab\ge0\)

\(\Leftrightarrow a^2-2ab+b^2\ge0\)

\(\Leftrightarrow\left(a-b\right)^2\ge0\) (luôn đúng \(\forall a,b\) )

=>đpcm

25 tháng 12 2019

Cô si

\(\frac{bc}{a}+\frac{ca}{b}\ge2\sqrt{\frac{bc}{a}\cdot\frac{ca}{b}}=2c\)

\(\frac{ca}{b}+\frac{ab}{c}\ge2\sqrt{\frac{ca}{b}\cdot\frac{ab}{c}}=2a\)

\(\frac{ab}{c}+\frac{bc}{a}\ge2\sqrt{\frac{ab}{c}\cdot\frac{bc}{a}}=2b\)

Cộng lại ta có:

\(2\left(\frac{bc}{a}+\frac{ca}{b}+\frac{ab}{c}\right)\ge2\left(a+b+c\right)\Rightarrowđpcm\)

11 tháng 6 2015

2) M = (x25 + 1 + 1 + 1 + 1) - 5x5 + 2

Áp dụng BĐT Cô - si cho 5 số dương x25; 1;1;1;1 ta có: x25 + 1 + 1 + 1 + 1 \(\ge\)5.\(\sqrt[5]{x^{25}.1.1.1.1}=x^5\) = 5x5

=> M \(\ge\) 5x5 - 5x5 + 2 = 2

Vậy M nhỏ nhất = 2 khi x25 = 1 => x = 1

11 tháng 6 2015

\(ab=\frac{1}{c};c=\frac{1}{ab}\)

\(a+b+c-\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)=a+b+\frac{1}{ab}-\frac{1}{a}-\frac{1}{b}-ab\)

\(=\left(a+b-ab-1\right)+\left(\frac{1}{ab}-\frac{1}{a}-\frac{1}{b}+1\right)\)

\(=-\left(a-1\right)\left(b-1\right)+\left(1-\frac{1}{a}\right)\left(1-\frac{1}{b}\right)\)

\(=-\left(a-1\right)\left(b-1\right)+\frac{\left(a-1\right)\left(b-1\right)}{ab}\)

\(=-\left(a-1\right)\left(b-1\right)+\left(a-1\right)\left(b-1\right)c\)

\(=\left(a-1\right)\left(b-1\right)\left(c-1\right)\)

Do biểu thức ban đầu dương nên ta có đpcm

 

25 tháng 9 2019

trả lời lẹ cho tui cấy

31 tháng 3 2018

\(b^4+c^4\ge bc\left(b^2+c^2\right)\)vì \(\left(b-c\right)^2\left(b^2+bc+c^2\right)\ge0\)

\(\Rightarrow T\le\frac{a}{\frac{b^2+c^2}{a}+a}+\frac{b}{\frac{a^2+c^2}{b}+b}+\frac{c}{\frac{a^2+b^2}{c}+c}=1\)

1 tháng 4 2018

rõ đi bạn

17 tháng 10 2020

2. \(BĐT\Leftrightarrow\frac{1}{1+\frac{2}{a}}+\frac{1}{1+\frac{2}{b}}+\frac{1}{1+\frac{2}{c}}\ge1\)

Đặt\(\frac{2}{a}=x;\frac{2}{b}=y;\frac{2}{c}=z\)thì \(\hept{\begin{cases}x,y,z>0\\xyz=8\end{cases}}\)

Ta cần chứng minh \(\frac{1}{1+x}+\frac{1}{1+y}+\frac{1}{1+z}\ge1\Leftrightarrow\left(yz+y+z+1\right)+\left(zx+z+x+1\right)+\left(xy+x+y+1\right)\ge xyz+\left(xy+yz+zx\right)+\left(x+y+z\right)+1\)\(\Leftrightarrow x+y+z\ge6\)(Đúng vì \(x+y+z\ge3\sqrt[3]{xyz}=6\))

Đẳng thức xảy ra khi x = y = z = 2 hay a = b = c = 1

17 tháng 10 2020

3. Ta có: \(a+b+c\le\sqrt{3}\Rightarrow\left(a+b+c\right)^2\le3\)

Ta có đánh giá quen thuộc \(\left(a+b+c\right)^2\ge3\left(ab+bc+ca\right)\)

Từ đó suy ra \(ab+bc+ca\le1\)

\(A=\frac{\sqrt{a^2+1}}{b+c}+\frac{\sqrt{b^2+1}}{c+a}+\frac{\sqrt{c^2+1}}{a+b}\ge\frac{\sqrt{a^2+ab+bc+ca}}{b+c}+\frac{\sqrt{b^2+ab+bc+ca}}{c+a}+\frac{\sqrt{c^2+ab+bc+ca}}{a+b}\)\(=\frac{\sqrt{\left(a+b\right)\left(a+c\right)}}{b+c}+\frac{\sqrt{\left(b+a\right)\left(b+c\right)}}{c+a}+\frac{\sqrt{\left(c+a\right)\left(c+b\right)}}{a+b}\ge3\sqrt[3]{\frac{\left(a+b\right)\left(b+c\right)\left(c+a\right)}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}}=3\)Đẳng thức xảy ra khi \(a=b=c=\frac{1}{\sqrt{3}}\)