K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 5 2016

Ta có : \(\left(a^{\log_37}\right)^{\log_37}+\left(b^{\log_711}\right)^{\log_711}+\left(c^{\log_{11}25}\right)^{\log_{11}25}=27^{^{\log_37}}+49^{^{\log_711}}+\left(\sqrt{11}\right)^{^{\log_{11}25}}\)

                                                                                         \(=7^3+11^2+25^{\frac{1}{2}}=469\)

AH
Akai Haruma
Giáo viên
7 tháng 7 2017

Lời giải:

Giả sử \(\log _{3}a=\log_4b=\log_{12}c=\log_{13}(a+b+c)=t\)

\(\Rightarrow 13^t=3^t+4^t+12^t\)

\(\Rightarrow \left ( \frac{3}{13} \right )^t+\left ( \frac{4}{13} \right )^t+\left ( \frac{12}{13} \right )^t=1\)

Xét vế trái , đạo hàm ta thấy hàm luôn nghịch biến nên phương trình có duy nhất một nghiệm \(t=2\)

Khi đó \(\log_{abc}144=\log_{144^t}144=\frac{1}{t}=\frac{1}{2}\)

Đáp án B

20 tháng 10 2017

cho em hỏi tại sao lại có 3^t +4^t +12^t=13^t. Với lại em không hiểu chỗ tại sao hàm số nghịch biến. Và tại sao từ \(\log_{abc}144=\log144_{144^t}=\dfrac{1}{t}\)

NV
19 tháng 11 2019

\(2^x=x^2\Rightarrow xln2=2lnx\Rightarrow\frac{ln2}{2}=\frac{lnx}{x}\Rightarrow x=2\)

Ta cũng có \(\frac{2ln2}{2.2}=\frac{lnx}{x}\Rightarrow\frac{ln4}{4}=\frac{lnx}{x}\Rightarrow x=4\) \(\Rightarrow\left\{{}\begin{matrix}a=2\\b=4\end{matrix}\right.\)

Pt dưới: \(4logx-\frac{logx}{loge}=log4\)

\(\Leftrightarrow logx\left(4-ln10\right)=log4\Leftrightarrow logx\left(ln\left(\frac{e^4}{10}\right)\right)=log4\)

\(\Rightarrow logx=\frac{log4}{ln\left(\frac{e^4}{10}\right)}=log4.log_{\frac{e^4}{10}}e\)

\(\Rightarrow x=10^{log4.log_{\frac{e^4}{10}}e}=\left(10^{log4}\right)^{log_{\frac{e^4}{10}}e}=2^{2.log_{\frac{e^4}{10}}e}\)

\(\Rightarrow\left\{{}\begin{matrix}c=2\\d=4\end{matrix}\right.\)

Bạn tự thay kết quả và tính

21 tháng 11 2019

Em cảm ơn nhiều ạ. ❤️

26 tháng 3 2016

a) Áp dụng bất đẳng thức Cauchy cho các số dương, ta có :

\(\log_23+\log_32>2\sqrt{\log_23.\log_32}=2\sqrt{1}=2\)

Không xảy ra dấu "=" vì \(\log_23\ne\log_32\)

Mặt khác, ta lại có :

\(\log_23+\log_32<\frac{5}{2}\Leftrightarrow\log_23+\frac{1}{\log_23}-\frac{5}{2}<0\)

                             \(\Leftrightarrow2\log^2_23-5\log_23+2<0\)

                            \(\Leftrightarrow\left(\log_23-1\right)\left(\log_23-2\right)<0\) (*)

Hơn nữa, \(2\log_23>2\log_22>1\) nên \(2\log_23-1>0\)

Mà \(\log_23<\log_24=2\Rightarrow\log_23-2<0\)

Từ đó suy ra (*) luôn đúng. Vậy \(2<\log_23+\log_32<\frac{5}{2}\)

b) Vì \(a,b\ge1\) nên \(\ln a,\ln b,\ln\frac{a+b}{2}\) không âm. 

Áp dụng bất đẳng thức Cauchy ta có

\(\ln a+\ln b\ge2\sqrt{\ln a.\ln b}\)

Suy ra 

\(2\left(\ln a+\ln b\right)\ge\ln a+\ln b+2\sqrt{\ln a\ln b}=\left(\sqrt{\ln a}+\sqrt{\ln b}\right)^2\)

Mặt khác :

\(\frac{a+b}{2}\ge\sqrt{ab}\Rightarrow\ln\frac{a+b}{2}\ge\frac{1}{2}\left(\ln a+\ln b\right)\)

Từ đó ta thu được :

\(\ln\frac{a+b}{2}\ge\frac{1}{4}\left(\sqrt{\ln a}+\sqrt{\ln b}\right)^2\)

hay \(\frac{\sqrt{\ln a}+\sqrt{\ln b}}{2}\le\sqrt{\ln\frac{a+b}{2}}\)

c) Ta chứng minh bài toán tổng quát :

\(\log_n\left(n+1\right)>\log_{n+1}\left(n+2\right)\) với mọi n >1

Thật vậy, 

\(\left(n+1\right)^2=n\left(n+2\right)+1>n\left(n+2\right)>1\) 

suy ra :

\(\log_{\left(n+1\right)^2}n\left(n+2\right)<1\Leftrightarrow\frac{1}{2}\log_{n+1}n\left(n+2\right)<1\)

                                  \(\Leftrightarrow\log_{n+1}n+\log_{\left(n+1\right)}n\left(n+2\right)<2\)

Áp dụng bất đẳng thức Cauchy ta có :

\(2>\log_{\left(n+1\right)}n+\log_{\left(n+1\right)}n\left(n+2\right)>2\sqrt{\log_{\left(n+1\right)}n.\log_{\left(n+1\right)}n\left(n+2\right)}\)

Do đó ta có :

\(1>\log_{\left(n+1\right)}n.\log_{\left(n+1\right)}n\left(n+2\right)\) và \(\log_n\left(n+1>\right)\log_{\left(n+1\right)}\left(n+2\right)\) với mọi n>1

 

GV
27 tháng 4 2017

a) Áp dụng công thức: \(\log_ab.\log_bc=\log_ac\)

b) Vì \(\dfrac{1}{\log_{a^k}b}=\dfrac{1}{\dfrac{1}{k}\log_ab}=\dfrac{k}{\log_ab}\) nên biểu thức vế trái bằng:

\(VT=\dfrac{1}{\log_ab}\left(1+2+...+n\right)\)

\(=\dfrac{1}{\log_ab}.\dfrac{n\left(n+1\right)}{2}=VP\)

12 tháng 5 2016

Ta có : \(a^2+4b^2=12ab\Leftrightarrow a^2+4ab+4b^2=16ab\)

                                      \(\Leftrightarrow\left(a+2b\right)^2=16ab\Leftrightarrow\left(\frac{a+2b}{4}\right)^2=ab\)

 \(\Rightarrow\log_{2013}\left(\frac{a+2b}{4}\right)^2=\log_{2013}\left(ab\right)\)

\(\Leftrightarrow2\left[\log_{2013}\left(a+2b\right)-2\log_{2013}2\right]=\log_{2013}a+\log_{2013}b\)

\(\Leftrightarrow\log_{2013}\left(a+2b\right)-2\log_{2013}2=\frac{1}{2}\left(\log_{2013}a+\log_{2013}b\right)\)

=> Điều phải chứng minh 

30 tháng 5 2017

a) \(\left(\dfrac{1}{9}\right)^{\dfrac{1}{2}log^4_3}=\left(3^{-2}\right)^{\dfrac{1}{2}log^4_3}=\left(3^{log^4_3}\right)^{-2.\dfrac{1}{2}}=4^{-1}=\dfrac{1}{4}\);
b) \(10^{3-log5}=\dfrac{10^3}{10^{log5}}=\dfrac{10^3}{5}=200\);
c) \(2log^{log1000}_{27}=2log^3_{3^3}=\dfrac{2}{3}log^3_3=\dfrac{2}{3}\);
d) \(3log_2^{log_4^{16}}+log^2_{\dfrac{1}{2}}=3log^2_2-log^2_2=3-1=2\).

NV
10 tháng 11 2018

1.\(\dfrac{log_ac}{log_{ab}c}=log_ac.log_c\left(ab\right)=log_ac.\left(log_ca+log_cb\right)=log_ac.log_ca+log_ac.log_cb=\dfrac{log_ac}{log_ac}+\dfrac{log_cb}{log_ca}=1+log_ab\)

2. \(log_{ax}bx=\dfrac{log_abx}{log_aax}=\dfrac{log_ab+log_ax}{log_aa+log_ax}=\dfrac{log_ab+log_ax}{1+log_ax}\)

3. \(\dfrac{1}{log_ax}+\dfrac{1}{log_{a^2}x}+...+\dfrac{1}{log_{a^n}x}=log_xa+log_xa^2+...+log_xa^n\)

\(=log_xa+2log_xa+...+n.log_xa=log_xa+2log_xa+...+n.log_xa\)

\(=log_xa.\left(1+2+...+n\right)=\dfrac{n\left(n+1\right)}{2}log_xa=\dfrac{n\left(n+1\right)}{2.log_ax}\)