Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ĐKXĐ : x\(\ne\mp2\)
A = \(\frac{x}{x-2}\)+\(\frac{2-x}{x+2}\)+\(\frac{12-10x}{\left(x-2\right)\left(x+2\right)}\)
=\(\frac{x\left(x+2\right)}{\left(x-2\right)\left(x+2\right)}\)+\(\frac{\left(2-x\right)\left(x-2\right)}{\left(x+2\right)\left(x-2\right)}\)+\(\frac{12-10x}{\left(x-2\right)\left(x+2\right)}\)
=\(\frac{x^2+2x-x^2+4x-4+12-10x}{\left(x-2\right)\left(x+2\right)}\)
=\(\frac{8-4x}{\left(x-2\right)\left(x+2\right)}\)
=\(\frac{-4\left(x-2\right)}{\left(x-2\right)\left(x+2\right)}\)
=\(\frac{-4}{x+2}\)
\(A=\frac{x-1}{x+2}-\frac{x+2}{x-2}-\frac{x^2+12}{4-x^2}=\frac{\left(x-1\right).\left(x-2\right)}{x^2-4}-\frac{\left(x+2\right)^2}{x^2-4}+\frac{x^2+12}{x^2-4}\)
\(=\frac{x^2-3x+2}{x^2-4}-\frac{x^2+4x+4}{x^2-4}+\frac{x^2+12}{x^2-4}=\frac{x^2-7x+10}{x^2-4}=\frac{\left(x-2\right).\left(x-5\right)}{\left(x-2\right).\left(x+2\right)}=\frac{x-5}{x+2}\)
\(A=\frac{x-1}{x+2}-\frac{x+2}{x-2}-\)\(\frac{x^2+12}{4-x^2}\)\(ĐKXĐ\): \(x\ne\pm2\)
\(=\frac{\left(x-1\right)\left(x-2\right)}{\left(x+2\right)\left(x-2\right)}\)\(-\frac{\left(x+2\right)^2}{\left(x-2\right)\left(x+2\right)}\)\(+\frac{x^2+12}{\left(x-2\right)\left(x+2\right)}\)
\(=\frac{x^2-2x-x+2-x^2-4x-4+x^2+12}{\left(x+2\right)\left(x-2\right)}\)
\(=\frac{x^2-7x+10}{\left(x+2\right)\left(x-2\right)}\)
\(=\frac{x^2-2x-5x+10}{\left(x+2\right)\left(x-2\right)}\)
\(=\frac{x\left(x-2\right)-5\left(x-2\right)}{\left(x+2\right)\left(x-2\right)}\)
\(=\frac{\left(x-5\right)\left(x-2\right)}{\left(x+2\right)\left(x-2\right)}\)
\(=\frac{x-5}{x+2}\)
a,\(A=\frac{6x+12}{\left(x+2\right)\left(2x-6\right)}=\frac{6\left(x+2\right)}{2\left(x+2\right)\left(x-3\right)}=\frac{3}{x-3}\)
b, Giá trị của x để phân thức có giá trị bằng (-2) :
\(\frac{3}{x-3}=-2\Rightarrow x=1,5\)
\(A=\frac{x-1}{x+2}-\frac{x+2}{x-2}-\frac{x^2+12}{4-x^2}\) ĐKXĐ: \(x\ne\pm2\)
\(=\frac{\left(x-1\right)\left(x-2\right)}{\left(x+2\right)\left(x-2\right)}-\frac{\left(x+2\right)^2}{\left(x-2\right)\left(x+2\right)}+\frac{x^2+12}{\left(x-2\right)\left(x+2\right)}\)
\(=\frac{x^2-2x-x+2-x^2-4x-4+x^2+12}{\left(x+2\right)\left(x-2\right)}\)
\(=\frac{x^2-7x+10}{\left(x+2\right)\left(x-2\right)}\)
\(=\frac{x^2-2x-5x+10}{\left(x+2\right)\left(x-2\right)}\)
\(=\frac{x\left(x-2\right)-5\left(x-2\right)}{\left(x+2\right)\left(x-2\right)}\)
\(=\frac{\left(x-5\right)\left(x-2\right)}{\left(x+2\right)\left(x-2\right)}\)
\(=\frac{x-5}{x+2}\)
Bạn rút gọn sai rồi, mình nhìn đề bài b) cho x>2 thì là biết chắc bạn sai , mình làm lại nhé : ( ĐKXĐ : tự làm )
a) \(Q=\frac{x\left(x+2\right)}{\left(x-2\right)^2}:\left(\frac{\left(x+2\right)\left(x-2\right)+x+6-x^2}{x\left(x-2\right)}\right)\)
\(=\frac{x\left(x+2\right)}{\left(x-2\right)^2}:\frac{x+2}{x\left(x-2\right)}\)
\(=\frac{x\left(x+2\right)}{\left(x-2\right)^2}\cdot\frac{x\left(x-2\right)}{x+2}=\frac{x^2}{x-2}\)
Vậy \(Q=\frac{x^2}{x-2}\)
b) Ta có : \(Q=\frac{x^2}{x-2}=\frac{x^2-4+4}{x-2}=x+2+\frac{4}{x-2}=x-2+\frac{4}{x-2}+4\)
Do \(x>2\Rightarrow x-2>0\) và \(\frac{4}{x-2}>0\)do đó áp dụng BĐT Cô si cho 2 số dương ta được :
\(x-2+\frac{4}{x-2}\ge2\sqrt{\left(x-2\right).\left(\frac{4}{x-2}\right)}=2\cdot\frac{1}{2}=1\)
\(\Rightarrow Q\ge1+4=5\)
Vậy : GTNN của \(Q=5\)
P/s : Ai vào kiểm tra hộ cái :)) Sợ sai lắm nhé, cảm ơn nha 33
Nếu chưa học Cô si thì chứng minh rồi dùng thôi :
Bài này sử dụng Cô - si hai số nên cần chứng minh BĐT :
\(a+b\ge2\sqrt{ab}\left(a,b>0\right)\)
Thật vậy : \(a+b\ge2\sqrt{ab}\)
\(\Leftrightarrow\left(a+b\right)^2\ge4ab\)
\(\Leftrightarrow\left(a-b\right)^2\ge0\) ( luôn đúng )
Do đó \(a+b\ge2\sqrt{ab}\) với a,b >0
Dấu "=" xảy ra \(\Leftrightarrow a=b\)
a) \(A=\frac{x}{x-5}-\frac{10x}{x^2-25}-\frac{5}{x+5}\left(x\ne\pm5\right)\)
\(=\frac{x}{x-5}-\frac{10x}{\left(x-5\right)\left(x+5\right)}-\frac{5}{x+5}\)
\(=\frac{x\left(x+5\right)}{x\left(x-5\right)}-\frac{10x}{\left(x-5\right)\left(x+5\right)}-\frac{5\left(x-5\right)}{\left(x-5\right)\left(x+5\right)}\)
\(=\frac{x^2+5x}{\left(x-5\right)\left(x+5\right)}-\frac{10x}{\left(x-5\right)\left(x+5\right)}-\frac{5x-25}{\left(x-5\right)\left(x+5\right)}\)
\(=\frac{x^2+5x-10x-5x+25}{\left(x-5\right)\left(x+5\right)}\)
\(=\frac{x^2-10x+25}{\left(x-5\right)\left(x+5\right)}=\frac{\left(x-5\right)^2}{\left(x-5\right)\left(x+5\right)}=\frac{x-5}{x+5}\)
Vậy \(A=\frac{x-5}{x+5}\left(x\ne\pm5\right)\)
b) Ta có \(A=\frac{x-5}{x+5}\left(x\ne\pm5\right)\)
Để A nhận giá trị nguyên thì \(\frac{x-5}{x+5}\)phải nhận giá trị nguyên
=> \(x-5⋮\)x+5
Ta có x-5=(x+5)-10
Thấy x+5 \(⋮\)x+5 => 10 \(⋮\)x+5 thì \(\left(x+5\right)-10⋮x+5\)
mà x nguyên => x+5 nguyên
=> x+5\(\inƯ\left(10\right)=\left\{-10;-5;-2;-1;1;2;5;10\right\}\)
ta có bảng
x+5 | -10 | -5 | -2 | -1 | 1 | 2 | 5 | 10 |
x | -15 | -10 | -7 | -6 | -4 | -3 | 0 | 5 |
ĐCĐK | tm | tm | tm | tm | tm | tm | tm | ktm |
Vậy x={-15;-10;-7;-6;-4;-3;0} thì \(A=\frac{x-5}{x+5}\)nhận giá trị nguyên
\(A=\frac{x}{x-2}+\frac{2-x}{x+2}+\frac{12-10x}{x^2-4}\)
\(=\frac{x\left(x+2\right)}{\left(x-2\right)\left(x+2\right)}+\frac{\left(2-x\right)\left(x-2\right)}{\left(x+2\right)\left(x-2\right)}+\frac{12-10x}{\left(x-2\right)\left(x+2\right)}=\frac{x^2+2x+4x-4-x^2+12-10x}{\left(x-2\right)\left(x+2\right)}=\frac{8-4x}{\left(x-2\right)\left(x+2\right)}=\frac{-4\left(x-2\right)}{\left(x-2\right)\left(x+2\right)}=-\frac{4}{x+2}\)