Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Tách tổng A thành 4 nhóm
A = ( 1 + \(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{49}+\frac{1}{50}\)) + ( \(\left(\frac{1}{51}+\frac{1}{52}+\frac{1}{53}+...+\frac{1}{99}+\frac{1}{100}\right)+\left(\frac{1}{101}+\frac{1}{102}+\frac{1}{103}+...+\frac{1}{149}+\frac{1}{150}\right)+\left(\frac{1}{151}+\frac{1}{152}+\frac{1}{153}+...+\frac{1}{199}+\frac{1}{200}\right)\)
A > \(\frac{1}{50}.50+\frac{1}{100}.50+\frac{1}{150}.50+\frac{1}{200}.50\)= \(\left(\frac{1}{50}+\frac{1}{100}+\frac{1}{150}+\frac{1}{200}\right).50=\frac{1}{24}.50=\frac{25}{12}\)
\(\Rightarrow\) A > \(\frac{25}{12}\)
1,
Tỉ số giữa 10 quyển và 15 quyển:
10: 15 = 2/3
Nếu chia đều thì mỗi bạn nhận đc:
[15x 2 + 10x3] : [2+3] = 12 [quyển]
Vậy:....................
2,
1/2 + 1/3 + 1/4 + ... + 1/50 = [1 - 1/2] + [1-2/3] + ... + [1 - 49/50]
= 1 - 1/2 + 1 - 2/3 + ... + 1 - 49/50
= [1 + 1 + 1 +... + 1] - [1/2+2/3+3/4+...+49/50]
= 49 - [1/2+2/3+3/4+...+49/50]
Vậy 1/2 + 1/3 + 1/4 + ... + 1/50 không là số tự nhiên
3,
1/42 + 1/52 + ... +1/1002 < 1/3.4 + 1/4.5 + 1/5.6 + ... + 1/99.100
<=> 1/42 + 1/52 + ... +1/1002 < 1/3 - 1/4 + 1/4 - 1/5 + ... + 1/99 - 1/100
<=> 1/42 + 1/52 + ... +1/1002 < 1/3 - 1/100
<=> E < 1/3 - 1/100
=> E < 1/3
Mà 1/3 - 1/100 = 97/300 > 1/5
=> 1/5 < E < 1/3
4, A:
2013/1 + 2014/2+2015/3+...+4023/2011+4024/2012 - 2012
= ( 2013/1 - 1)+(2014/2 - 1) + ( 2015/3 - 1)+...+ (4023/2011 - 1) + ( 4024/2012 - 1)
= 2012(1+1/2+1/3+...+ 1/2011+1/2012)
Vậy \(A=\frac{\text{(1+1/2+1/3+...+ 1/2011+1/2012)}}{\text{2012(1+1/2+1/3+...+ 1/2011+1/2012)}}=\frac{1}{2012}\)
Câu B mik sẽ làm sau, bây giờ mik bận
Tỉ số giữa 10 quyển và 15 quyển:
10:15=2/3
Vậy nếu chia cho cả lớp thì mõi bạn nhận được:
(15x2+10x3):5=12 quyển
a) \(\frac{10}{17}-\frac{5}{13}+\frac{7}{17}+\frac{-8}{13}-\frac{11}{25}\)
\(=\frac{10}{17}+\frac{-5}{13}+\frac{7}{17}+\frac{-8}{13}+\frac{-11}{25}\)
\(=\left(\frac{10}{17}+\frac{7}{17}\right)+\left(\frac{-5}{13}+\frac{-8}{13}\right)+\frac{-11}{25}\)
\(=1+\left(-1\right)+\frac{-11}{25}\)
\(=0+\frac{-11}{25}\)
\(=\frac{-11}{25}\)
a) \(\frac{10}{17}-\frac{5}{13}+\frac{7}{17}+\frac{-8}{13}-\frac{11}{25}\)
\(=\frac{10}{17}+\frac{-5}{13}+\frac{7}{17}+\frac{-8}{13}+\frac{-11}{15}\)
\(=\left(\frac{10}{17}+\frac{7}{17}\right)+\left(\frac{-5}{13}+\frac{-8}{13}\right)+\frac{-11}{15}\)
\(=1+\left(-1\right)+\frac{-11}{15}\)
\(=0+\frac{-11}{15}\)
\(=\frac{-11}{15}\)
b) 1 - 2 + 3 - 4 + ...... + 2011 - 2012 ( có 2012 số )
= ( 1 - 2 ) + ( 3 - 4 ) + ....... + ( 2011 - 2012 ) ( có 1006 nhóm )
= ( - 1 ) + ( - 1 ) + ........ + ( - 1 ) ( có 1006 số )
= ( - 1 ) . 1006
= - 1006
Bài 2:
a, S = 1/11 + 1/12 + .. +1/20 với 1/2
SỐ số hạng tổng S: [20 - 11]: 1 + 1 = 10 số
mà 1/11 > 1/20
1/12 > 1/20
.........................
1/20 = 1/20
=> 1/11 + 1/12 + ... + 1/20 > 1/20 . 10 => S > 1/2
b, B = 2015/2016 + 2016/2017 và C = 2015+2016/2016+2017
Dễ dàng ta thấy: C = 4031/4033 < 1
B = 2015/2016 + 2016/2017
B = 2015/2016 + [1/2016 + 4062239/4066272]
B = [2015/2016 + 1/2016] + 4062239/4066272]
B = 1 +4062239/4066272
=> B > 1
Vậy B > C
c, [-1/5]^9 và [-1/25]^5
ta có: 255 = [52]5 = 52.5 = 510 > 59
=> [1/5]9 > [1/25]5
=> [-1/5]9 < [-1/25]5
d, 1/32+1/42+1/52+1/62 và 1/2
ta có: 1/3^2 + 1/4^2 + 1/5^2 + 1/6^2 = 1/9 + 1/16 + 1/25 + 1/36
mà: 1/9 < 1/8
1/16 < 1/8
1/25 < 1/8
1/36 < 1/8
=> 1/9+1/16+1/25+1/36 < 1/2
Vậy 1/32+1/42+1/52+1/62 < 1/2
Bài 1:
A = 3/4 . 8/9 . 15/16....2499/2500
A = [1.3/22][2.4/32]....[49.51/502]
A = [1.2.3.4.5...51 / 2.3.4....50][3.4.5...51 / 2.3.4...50]
A = 1/50 . 51/2
A = 51/100
B = 22/1.3 + 32/2.4 + ... + 502/49.51
B = 4/3.9/8....2500/2499
Nhận thấy B ngược A => B = 100/51 [cách tính tương tự tính A]
Bài 2:
a. S = 1/11+1/12+...+1/20 và 1/2
Số số hạng tổng S: [20 - 11]: 1 + 1 = 10 [ps]
ta có: 1/11 > 1/20
\(\frac{5}{7}\times\frac{1}{3}-\frac{5}{7}\times\frac{1}{4}-\frac{5}{7}\times\frac{1}{2}\)
\(=\frac{5}{7}\times\left(\frac{1}{3}-\frac{1}{4}-\frac{1}{2}\right)\)
\(=\frac{5}{7}\times\left(\frac{4}{12}-\frac{3}{12}-\frac{6}{12}\right)\)
\(=\frac{5}{7}\times\left(\frac{4-3-6}{12}\right)\)
\(=\frac{5}{7}\times\frac{-5}{12}\)
\(=\frac{5\times\left(-5\right)}{7\times12}\)
\(=\frac{-25}{84}\)
\(\frac{5}{7}.\frac{1}{3}-\frac{5}{7}.\frac{1}{4}-\frac{5}{7}.\frac{1}{2}\)
= \(\frac{5}{7}.\left(\frac{1}{3}-\frac{1}{4}-\frac{1}{2}\right).1\)
\(=\frac{5}{7}.\frac{-5}{12}\)
\(=-\frac{25}{84}\)