K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 1 2016

 

\(B=\frac{1}{4^2}+\frac{1}{6^2}+\frac{1}{8^2}+..+\frac{1}{100^2}=\frac{1}{\left(2.2\right)^2}+\frac{1}{\left(2.3\right)^2}+\frac{1}{\left(2.4\right)^2}+..+\frac{1}{\left(2.100\right)^2}\)

\(B=\frac{1}{2^2.2^2}+\frac{1}{2^2.3^2}+\frac{1}{2^2.4^2}+..+\frac{1}{2^2.100^2}=\frac{1}{2^2}.\frac{1}{2^2}+\frac{1}{2^2}.\frac{1}{3^2}+\frac{1}{2^2}.\frac{1}{4^2}+..+\frac{1}{2^2}.\frac{1}{100^2}\)

\(=\frac{1}{2^2}.\left(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}\right)=\frac{1}{4}.A\)

\(=>\frac{A}{B}=\frac{A}{\frac{A}{4}}=4\)

2 tháng 1 2017

\(B=\frac{1}{2^2}.\left(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}\right)\)

\(\rightarrow\frac{A}{B}=\frac{\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}^2}{\frac{1}{4}\left(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}\right)}=\frac{1}{\frac{1}{4}}=4\)

xin loi may anh tai tui moi lop 6 thui ha

2 tháng 2 2016

moi hoc lop 6 thoi

27 tháng 1 2016

Ta có :

  \(\frac{A}{B}=\frac{\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+......+\frac{1}{100^2}}{\frac{1}{4^2}+\frac{1}{6^2}+\frac{1}{8^2}+......\frac{1}{200^2}}=\frac{4\left(\frac{1}{4^2}+\frac{1}{6^2}+\frac{1}{8^2}+...+\frac{1}{200^2}\right)}{\frac{1}{4^2}+\frac{1}{6^2}+\frac{1}{8^2}+...+\frac{1}{200^2}}=4\)

 Vậy \(\frac{A}{B}=4\) 

18 tháng 1 2016

thật lòng xin lỗi bạn mình mới học lớp 5

18 tháng 1 2016

tick mình đủ 20 với 

25 tháng 1 2016

Mai Thanh Hoàng: You are right! 

5 tháng 2 2016

Ta có:

\(2^2<4^2\Rightarrow\frac{1}{2^2}>\frac{1}{4^2}\)

\(3^2<6^2\Rightarrow\frac{1}{3^2}>\frac{1}{6^2}\)

\(4^2<8^2\Rightarrow\frac{1}{4^2}<\frac{1}{8^2}\)

\(...\)

\(100^2<200^2\Rightarrow\frac{1}{100^2}>\frac{1}{200^2}\)

\(\Rightarrow\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}>\frac{1}{4^2}+\frac{1}{6^2}+\frac{1}{8^2}+...+\frac{1}{200^2}\)

\(\Rightarrow A>B\)

5 tháng 2 2016

Nhìn là đủ thấy A < B rùi

bạn ấn vào đúng 0 sẽ ra kết quả, mình làm bài này rồi dễ lắm