\(A=\frac{1}{1.2}+\frac{1}{3.4}+\frac{1}{5.6}+....\frac{1}{99.100}.\)Chứng minh rằng:...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 6 2015

ta có A =1/1.2+1/3.4+1/5.6+...+1/99.100

=(1/1.2+1/3.4)+(1/5.6+...+1/99.100)

=7/12+(1/5.6+...+1/99.100)>7/12(1)

A=1-1/2+1/3-1/4+1/5-1/6+...+1/99-1/100

=(1+1/3+1/5+...+1/99)-(1/2+1/4+..+1/100)

=(1+1/2+1/3+1/4+..+1/99+1/100)-2(1/2+1/4+....+1/100)    ( cộng thêm cả 2 vế với 1/2+1/4+..+1/100)

=(1+1/2+1/3+..+1/100)-(1+1/2+..+1/50)

=1/51+1/52+..+1/100

dãy số trên có 50 số hang 50 chia hết cho 10 nên ta nhóm 10 số vào 1 nhóm

A=(1/51+1/52+..+1/60)+(1/61+1/62+..+1/70)+(1/71+1/72+..+1/80)+(1/81+..+1/90)+(1/91+..+1/100)

<1/50.10+1/60.10+1/70.10+1/80.10+1/90.10=1/5+1/6+1/7+1/8+1/9<1/5+1/6+1/7.3=167/210<175/210=5/6

=>A<5/6(2)

từ 1 và 2 =>đpcm

dung tôi chỉ muốn nói rằng đừng đánh giá người khác mà hay xem lại mik chứng minh điều mik nói là đúng trước khi nói người khác sai

6 tháng 9 2018

Đúng ak

6 tháng 7 2017

a=\(1-\frac{1}{2}+\frac{1}{3}-...-\frac{1}{100}=\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{100}\right)-2\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{100}\right)\)\(=\left(1+\frac{1}{2}+...+\frac{1}{100}\right)-\left(1+\frac{1}{2}+...+\frac{1}{50}\right)=\frac{1}{51}+...+\frac{1}{100}\)

=>b/a=2011

6 tháng 7 2017

hình như đề : CMR : \(\frac{b}{a}\)là 1 số nguyên

Ta có :

\(a=\frac{1}{1.2}+\frac{1}{3.4}+\frac{1}{5.6}+...+\frac{1}{99.100}\)

\(a=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\frac{1}{5}-\frac{1}{6}+...+\frac{1}{99}-\frac{1}{100}\)

\(a=\left(1+\frac{1}{3}+\frac{1}{5}+...+\frac{1}{99}\right)-\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+...+\frac{1}{100}\right)\)

\(a=\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+\frac{1}{6}+...+\frac{1}{99}+\frac{1}{100}\right)-2\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+...+\frac{1}{100}\right)\)

\(a=\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{100}\right)-\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{50}\right)\)

\(a=\frac{1}{51}+\frac{1}{52}+...+\frac{1}{100}\)

\(b=\frac{2011}{51}+\frac{2011}{52}+\frac{2011}{53}+...+\frac{2011}{100}\)

\(b=2011.\left(\frac{1}{51}+\frac{1}{52}+\frac{1}{53}+...+\frac{1}{100}\right)\)

\(\Rightarrow\frac{b}{a}=\frac{2011.\left(\frac{1}{51}+\frac{1}{52}+\frac{1}{53}+...+\frac{1}{100}\right)}{\frac{1}{51}+\frac{1}{52}+\frac{1}{53}+...+\frac{1}{100}}=2011\)là 1 số nguyên ( đpcm )

13 tháng 3 2018

1/1 . 2 + 1/ 3 . 4 + 1/5 . 6 + ...+ 1/99 . 100 

= 1 - 1/2 + 1/3 - 1/4 + 1/5 - 1/6 + ...+ 1/99 - 1/100 

= ( 1 + 1/3 + 1/5 + ...+ 1/99 ) - ( 1/2 + 1/4 + ...+ 1/100 ) 

= ( 1 + 1/2 + 1/3 + ...+ 1/99 + 1/100 ) - 2 . ( 1/2 + 1/4 + ...+ 1/100 ) 

= ( 1 + 1/2 + 1/3 + ...+ 1/99 + 1/100 ) - ( 1 + 1/2 + ...+ 1/50 ) 

=     1/51 + 1/52 + ...+ 1/100 

Tham khảo nha !!! 

13 tháng 3 2018

\(\frac{1}{1\cdot2}+\frac{1}{3\cdot4}+\frac{1}{5\cdot6}+...+\frac{1}{99\cdot100}\)

\(=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\frac{1}{5}-\frac{1}{6}+...+\frac{1}{99}-\frac{1}{100}\)

\(=\left(1+\frac{1}{3}+\frac{1}{5}+...+\frac{1}{99}\right)-\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+...+\frac{1}{100}\right)\)

\(=1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+\frac{1}{6}+...+\frac{1}{99}+\frac{1}{100}-2\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+...+\frac{1}{100}\right)\)

\(=1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+\frac{1}{6}+...+\frac{1}{99}+\frac{1}{100}-1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{50}\)

\(=\frac{1}{51}+\frac{1}{52}+\frac{1}{53}+...+\frac{1}{100}\)   (đpcm)

4 tháng 9 2016

\(\text{Ta có: }B=\frac{1}{1.2}+\frac{1}{3.4}+\frac{1}{5.6}+.....+\frac{1}{99.100}\)

\(=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+.....+\frac{1}{99}-\frac{1}{100}\)

\(=\left(1+\frac{1}{3}+\frac{1}{5}+....+\frac{1}{99}\right)-\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+....+\frac{1}{100}\right)\)

\(=\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+....+\frac{1}{99}+\frac{1}{100}\right)-2\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+.....+\frac{1}{100}\right)\)

\(=\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+.....+\frac{1}{100}\right)-\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+....+\frac{1}{50}\right)\)

\(=\frac{1}{51}+\frac{1}{52}+\frac{1}{53}+....+\frac{1}{100}\left(1\right)\)

\(\text{Lại có:}A=\frac{1}{51}+\frac{1}{52}+\frac{1}{53}+.....+\frac{1}{100}\left(2\right)\)

\(\text{Từ (1) và (2) ta có A = B }\Rightarrow\frac{A}{B}=1\)

22 tháng 8 2017

\(\frac{a}{b}=\frac{1}{1}\)

14 tháng 6 2018

Hướng dẫn

Áp dụng BĐT để giải

~ Ủng hộ nhé

8 tháng 8 2017

Bạn muốn có đáp án mk chỉ cho bạn hai cách:

1, Vô âu hỏi tương tự.

2, lên google gõ dòng chữ Cho p=1/1.2+1/3.4+1/5.6+...+1/99.100. Chứng minh 7/12<P<5/6 rồi nhấn tìm kiếm quá trời câu trả lời luôn á .

Mk lười giải quá bạn làm theo cách mk chỉ đi thể nào cũng có câu trả lời mà tìm được câu trả lời thì nhớ k cho mk nhé ....