\(A=\frac{10^{11}-1}{10^{12}-1}\) \(;B=\frac{10^{10}+1}{10^{11}+...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 7 2016

ai biết thì giải hộ mình nha. Mình cảm ơn

6 tháng 3 2019

\(A=\frac{10^{11}-1}{10^{12}-1}\Leftrightarrow10A=1-\frac{9}{10^{12}-1};B=\frac{10^{10}+1}{10^{11}+1}\Rightarrow10B=1+\frac{9}{10^{11}+1}\Rightarrow10A< 10B\Rightarrow A< B\)

6 tháng 3 2018

\(A=\frac{10^{11}-1}{10^{12}-1}< \frac{10^{11}-1+11}{10^{12}-1+11}\)  theo công thức \(\frac{a}{b}< \frac{a+m}{b+m}\)

\(A< \frac{10^{11}+10}{10^{12}+10}=\frac{10^{10}\left(10+1\right)}{10^{11}\left(10+1\right)}=\frac{10^{10}}{10^{11}}\)

\(\Rightarrow\frac{10^{10}}{10^{11}}=\frac{10^{10}\cdot10^{12}}{10^{11}\cdot10^{12}}=\frac{10^{22}}{10^{23}}\)

\(\Leftrightarrow A< \frac{10^{10}}{10^{11}}=\frac{10^{11}}{10^{12}}\)

Lại áp dụng công thức \(\frac{a}{b}< \frac{a+m}{b+m}\)

\(A< \frac{10^{10}}{10^{11}}=\frac{10^{11}}{10^{12}}< \frac{10^{11}+1}{10^{12}+1}=B\)

\(\Leftrightarrow A< B\)

6 tháng 3 2018

Hoặc \(A< \frac{10^{11}-1+2}{10^{12}-1+2}=\frac{10^{12}+1}{10^{12}+1}\)

..... (EZ)

8 tháng 3 2022

TL :

Ko biết thì đừng làm

Nhớ làm hết , chi tiết mới đc 1 SP

HT

8 tháng 3 2022

rep dẹp hết

1 tháng 2 2017

Ta có :

\(A=\frac{10^{11}-1}{10^{12}-1}< \frac{10^{11}-1+11}{10^{12}-1+11}=\frac{10^{11}+10}{10^{12}+10}=\frac{10\left(10^{10}+1\right)}{10\left(10^{11}+1\right)}=\frac{10^{10}+1}{10^{11}+1}=B\)

\(\Rightarrow A< B\)

1 tháng 2 2017

bài này ko cần cách làm tớ chỉ ra kết quả thui

1 tháng 3 2019

\(\frac{-207}{809}\)1

\(\frac{175}{-526}\)1

=> \(\frac{-207}{809}\)\(\frac{175}{-526}\)

Mik bt làm câu a thôi nha!

Câu b hoei khó

1 tháng 7 2015

mình làm được câu a thôi. bạn có bấm đúng k để mình làm cho

1 tháng 7 2015

thôi mình làm hết cho

a) xét hiệu ta có: \(\frac{a+n}{b+n}-\frac{a}{b}=\frac{ab+bn-ab-an}{b\left(b+n\right)}=\frac{n\left(b-a\right)}{b\left(b+n\right)}\)

với n,b, thuộc N => b(b+n) luôn >0

với n >0 => nếu b>a => b-a>0 <=> n(b-a) >0 => \(\frac{n\left(b-a\right)}{b\left(b+n\right)}>0\Rightarrow\frac{a+n}{b+n}-\frac{a}{b}>0\Leftrightarrow\frac{a+n}{b+n}>\frac{a}{b}\)

ngược lại nếu b<a => b-a<0 <=> n(b-a)<0 => \(\frac{n\left(b-a\right)}{b\left(b+n\right)}<0\Rightarrow\frac{a+n}{b+n}-\frac{a}{b}<0\Leftrightarrow\frac{a+n}{b+n}<\frac{a}{b}\)

b) \(10A=\frac{10^{12}-10}{10^{12}-1}=\frac{10^{12}-1}{10^{12}-1}-\frac{9}{10^{12}-1}=1-\frac{9}{10^{12}-1}\)\(10B=\frac{10^{11}+10}{10^{11}+1}=1+\frac{9}{10^{11}+1}\)

=> 10B>10A => B>A

26 tháng 5 2018

 \(10A=\frac{10^{12}-1-9}{10^{12}-1}=\frac{10^{12}-9}{10^{12}}-1\)

\(10B=\frac{10^{11}+1+9}{10^{11}+1}=\frac{10^{11}+9}{10^{11}}+1\)

26 tháng 5 2018

ta có: \(A=\frac{10^{11}-1}{10^{12}-1}\)

\(\Rightarrow10.A=\frac{10^{12}-10}{10^{12}-1}=\frac{10^{12}-1-9}{10^{12}-1}=\frac{10^{12}-1}{10^{12}-1}-\frac{9}{10^{12}-1}\)\(=1-\frac{9}{10^{12}-1}< 1\)

ta có: \(B=\frac{10^{10}+1}{10^{11}+1}\)

\(\Rightarrow10.B=\frac{10^{11}+10}{10^{11}+1}=\frac{10^{11}+1+9}{10^{11}+1}=\frac{10^{11}+1}{10^{11}+1}+\frac{9}{10^{11}+1}\)\(=1+\frac{9}{10^{11}+1}>1\)

\(\Rightarrow10.A< 10.B\)

\(\Rightarrow A< B\)

26 tháng 1 2017

a>b nha

26 tháng 1 2017

\(10A=\frac{10\left(10^{11}-1\right)}{10^{12}-1}=\frac{10^{12}-10}{10^{12}-1}=1-\frac{9}{10^{12}-1}\)

\(10B=\frac{10\left(10^{10}+1\right)}{10^{11}+1}=\frac{10^{11}+10}{10^{11}+1}=1+\frac{9}{10^{11}+1}\)

Vì \(1-\frac{9}{10^{12}-1}< 1+\frac{9}{10^{11}+1}\Rightarrow10A< 10B\)

\(\Rightarrow A< B\)

b, 2000A = \(\frac{2000\left(2000^{2015}+1\right)}{2000^{2016}+1}\) 

                 = \(\frac{2000^{2016}+2000}{2000^{2016}+1}\)

                 = \(\frac{\left(2000^{2016}+1\right)+1999}{2000^{2016}+1}\)

                 = \(\frac{2000^{2016}+1}{2000^{2016}+1}\) + \(\frac{1999}{2000^{2016}+1}\)

                 = 1 + \(\frac{1999}{2000^{2016}+1}\)

    2000B = \(\frac{2000\left(2000^{2014}+1\right)}{2000^{2015}+1}\)

                 = \(\frac{2000^{2015}+2000}{2000^{2015}+1}\)

                 = \(\frac{\left(2000^{2015}+1\right)+1999}{2000^{2015}+1}\)

                 = \(\frac{2000^{2015}+1}{2000^{2015}+1}\) + \(\frac{1999}{2000^{2015}+1}\)

                 = 1 + \(\frac{1999}{2000^{2015}+1}\)

So sanh 

câu b tiếp 

So sánh 2000A với 2000B  

Vì \(\frac{1999}{2000^{2016}+1}\) < \(\frac{1999}{2000^{2015}+1}\)

→ 2000A< 2000B

→ A<B