Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:
A = \(\frac{\sqrt{x}+1}{\sqrt{x}-3}=\frac{\left(\sqrt{x}-3\right)+4}{\sqrt{x}-3}=1+\frac{4}{\sqrt{x}-3}\)
Để A \(\in\)Z <=> 4 \(⋮\)\(\sqrt{x}-3\)
<=> \(\sqrt{x}-3\inƯ\left(4\right)=\left\{1;-1;2;-2;4;-4\right\}\)
<=>\(\sqrt{x}\in\left\{4;2;5;1;7;-1\right\}\)
Do \(\sqrt{x}\ge0\) => \(\sqrt{x}\in\left\{4;2;5;1;7\right\}\)
=> \(x\in\left\{16;4;25;1;49\right\}\)
Vậy ...
\(A=\frac{\sqrt{x}+1}{\sqrt{x}-3}=\frac{\sqrt{x}-3+4}{\sqrt{x}-3}=1\)\(+\frac{4}{\sqrt{x}-3}\)
ĐKXĐ: \(x\in R\)
Vì \(x\in Z \Rightarrow \sqrt{x}-3\in Z\)
Để A là một số nguyên <=> \(\frac{4}{\sqrt{x}-3}\in Z\)
<=> \(4⋮\sqrt{x}-3\)
<=> \(\sqrt{x}-3\inƯ\left(4\right)=\left\{1,2,4,-1,-2,-4\right\}\)mà \(\sqrt{x}-3\ge-3\forall x\)
<=>\(\sqrt{x}\in\left\{4;5;7;2;1\right\}\)
<=> \(x\in\left\{16;25;49;4;1\right\}\)
Ta có: A=\(\frac{\sqrt{x+1}}{\sqrt{x}-3}\)=\(\frac{\sqrt{x-3+4}}{\sqrt{x-3}}\)=\(\frac{\sqrt{x-3}}{\sqrt{x-3}}\)+\(\frac{4}{\sqrt{x-3}}\)= 1 + \(\frac{4}{\sqrt{x-3}}\)
=> Để A là số nguyên thì \(\frac{4}{\sqrt{x-3}}\)là 1 số nguyên.
=> \(\sqrt{x-3}\)\(\in\)Ư(4)
=> \(\sqrt{x-3}\)\(\in\)(1;2;4;-1;-2;-4)
Với \(\sqrt{x-3}\)=1 thì x-3=1 => x=1+3=4
Với \(\sqrt{x-3}\)=2 thì x-3 =4 => x=4+3=7
Với \(\sqrt{x-3}\)=4 thì x-3=16 => x=16+3=19
Với\(\sqrt{x-3}\)= -1 thì x-3=1 => x=1+3=4
Với\(\sqrt{x-3}\)= -2 thì x-3=4 => x=4+3=7
Với\(\sqrt{x-3}\)= -4 thì x-3=16 => x=16+3=19
Vậy, để A là số nguyên thì x\(\in\)(4;7;19)
tách căn x+1 =căn x-3+2
cho căn x-3 la ước của 2
ước của 2 la (1;-1;2;-2) cho căn-3 = lần luot ước 2 tinh ra
x=1;x=4;x=16;x=25
\(A=\dfrac{\sqrt{x}-3+4}{\sqrt{x}-3}=1+\dfrac{4}{\sqrt{x}-3}\)
Để A nguyên \(\Rightarrow4⋮\left(\sqrt{x}-3\right)\Rightarrow\sqrt{x}-3=Ư\left(4\right)\)
Mà \(\sqrt{x}-3\ge-3\Rightarrow\sqrt{x}-3=\left\{-2;-1;1;2;4\right\}\)
\(\Rightarrow\sqrt{x}=\left\{1;2;4;5;7\right\}\)
\(\Rightarrow x=\left\{1;4;16;25;49\right\}\)