K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 11 2017

\(\left|a-b\right|=\left|\dfrac{5n-1}{4}-\dfrac{3n+12}{12}\right|=\left|n-\dfrac{5}{4}\right|\).
Nếu \(a,b\) là hai số tự nhiên liên tiếp thì \(\left|a-b\right|=1\) nghĩa là:
\(\left|n-\dfrac{5}{4}\right|=1\Leftrightarrow\left[{}\begin{matrix}n-\dfrac{5}{4}=-1\\n-\dfrac{5}{4}=1\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}n=\dfrac{1}{4}\\n=\dfrac{9}{4}\end{matrix}\right.\) (mâu thuẫn do \(n\in N\)).
Vậy \(a,b\) không đồng thời là hai số tự nhiên liên tiếp với \(n\in N\).

17 tháng 11 2017

Gợi ý cách làm.

Để cho a và b là 2 số tự nhiên liên tiếp thì \(a-b=1\)hoặc \(a-b=-1\)thế vô giải tìm.

Giải sẽ không tìm được n tự nhiên nên kết luận DPCM là đúng.

Thử tự làm xem sao nhé

8 tháng 11 2017

Câu 1:

\(\dfrac{x+1}{10}+\dfrac{x+1}{11}+\dfrac{x+1}{12}=\dfrac{x+1}{13}+\dfrac{x+1}{14}\)

\(\Rightarrow\left(\dfrac{x+1}{10}+\dfrac{x+1}{11}+\dfrac{x+1}{12}\right)\) - \(\left(\dfrac{x+1}{13}+\dfrac{x+1}{14}\right)=0\)

\(\Rightarrow\left(x+1\right).\left(\dfrac{1}{10}+\dfrac{1}{11}+\dfrac{1}{12}-\dfrac{1}{13}-\dfrac{1}{14}\right)\)= 0

\(\dfrac{1}{10}+\dfrac{1}{11}+\dfrac{1}{12}-\dfrac{1}{13}-\dfrac{1}{14}\ne0\)

\(\Rightarrow x+1=0\)

=> x = 0 - 1

=> x = -1

8 tháng 11 2017

Câu 2:

Ta có: \(A=\dfrac{3n+9}{n-4}=\dfrac{3n-3.4+9+12}{n-4}\)

\(=\dfrac{3.\left(n-4\right)+21}{n-4}=3+\dfrac{21}{n-4}\)

Để A có giá trị nguyên thì:

n - 4 \(\in\) Ư(21)

=> n - 4 \(\in\)

n4 3 -3 7 -7 -1 1 -21 21
n 7 1 11 -3 3 5 -17 25

9 tháng 9 2018

Bài 1.

Giải

a) Ta có: \(A=\dfrac{3n+9}{n-4}=\dfrac{3n-12+21}{n-4}=\dfrac{3\left(n-4\right)+21}{n-4}=3+\dfrac{21}{n-4}\)

Để \(A\in Z\) thì \(\dfrac{21}{n-4}\in Z\)

\(\Rightarrow21⋮\left(n-4\right)\)

\(\Rightarrow\left(n-4\right)\inƯ\left(21\right)\)

\(\Rightarrow\left(n-4\right)\in\left\{\pm1;\pm3;\pm7;\pm21\right\}\)

Ta có bẳng sau:

\(n-4\) \(-21\) \(-7\) \(-3\) \(-1\) \(1\) \(3\) \(7\) \(21\)
\(n\) \(-17\) \(-3\) \(1\) \(3\) \(5\) \(7\) \(11\) \(25\)

Vậy \(n\in\left\{-17;-3;1;3;5;7;11;25\right\}\) thì \(A\in Z.\)

b) Ta có: \(B=\dfrac{6n+5}{2n-1}=\dfrac{6n-3+8}{2n-1}=\dfrac{3\left(2n-1\right)+8}{2n-1}=3+\dfrac{8}{2n-1}\)

Để \(B\in Z\) thì \(\dfrac{8}{2n-1}\in Z\)

\(\Rightarrow8⋮\left(2n-1\right)\)

\(\Rightarrow\left(2n-1\right)\inƯ\left(8\right)\)

\(\Rightarrow\left(2n-1\right)\in\left\{\pm1;\pm2;\pm4;\pm8\right\}\)

Ta có bảng sau:

\(2n-1\) \(-8\) \(-4\) \(-2\) \(-1\) \(1\) \(2\) \(4\) \(8\)
\(2n\) \(-7\) \(-3\) \(-1\) \(0\) \(2\) \(3\) \(5\) \(9\)
\(n\) \(\dfrac{-7}{2}\) \(\dfrac{-3}{2}\) \(\dfrac{-1}{2}\) \(0\) \(1\) \(\dfrac{3}{2}\) \(\dfrac{5}{2}\) \(\dfrac{9}{2}\)

Vậy \(n\in\left\{\dfrac{-7}{2};\dfrac{-3}{2};\dfrac{-1}{2};0;1;\dfrac{3}{2};\dfrac{5}{2};\dfrac{9}{2}\right\}\)

9 tháng 9 2018

Bạn Nguyen Thi Huyen giải bài 1 rồi nên mình giải tiếp các bài kia nhé!

Bài 2:

\(\dfrac{x-18}{2000}+\dfrac{x-17}{2001}=\dfrac{x-16}{2002}+\dfrac{x-15}{2003}\)

\(\Leftrightarrow\left(\dfrac{x-18}{2000}-1\right)+\left(\dfrac{x-17}{2001}-1\right)=\left(\dfrac{x-16}{2002}-1\right)+\left(\dfrac{x-15}{2003}-1\right)\)

\(\Leftrightarrow\dfrac{x-2018}{2000}+\dfrac{x-2018}{2001}=\dfrac{x-2018}{2002}+\dfrac{x-2018}{2003}\)

\(\Leftrightarrow\dfrac{x-2018}{2000}+\dfrac{x-2018}{2001}-\dfrac{x-2018}{2002}-\dfrac{x-2018}{2003}=0\)

\(\Leftrightarrow\left(x-2018\right)\left(\dfrac{1}{2000}+\dfrac{1}{2001}-\dfrac{1}{2002}-\dfrac{1}{2003}\right)=0\)

Dễ thấy \(\dfrac{1}{2000}>\dfrac{1}{2001}>\dfrac{1}{2002}>\dfrac{1}{2003}\) nên:

\(\dfrac{1}{2000}+\dfrac{1}{2001}+\dfrac{1}{2002}+\dfrac{1}{2003}\ne0\). Do đó:

\(x-2018=0\Leftrightarrow x=2018\)

Bài 3:

a) \(\dfrac{5}{x}+\dfrac{y}{4}=\dfrac{1}{8}\Leftrightarrow\dfrac{20}{4x}+\dfrac{xy}{4x}=\dfrac{20+xy}{4x+4x}=\dfrac{20+xy}{8x}=\dfrac{1}{8}\)

Hoán vị ngoại tỉ ta có: \(\dfrac{20+xy}{8x}=\dfrac{1}{8}\Leftrightarrow\dfrac{8}{8x}=\dfrac{1}{x}=\dfrac{1}{8}\Leftrightarrow x=8\)

Thế x = 8 vào : \(\dfrac{5}{x}+\dfrac{y}{4}=\dfrac{1}{8}\) .Ta có: \(\dfrac{5}{8}+\dfrac{y}{4}=\dfrac{1}{8}\Leftrightarrow\dfrac{y}{4}=\dfrac{1}{8}-\dfrac{5}{8}=\dfrac{-2}{4}\). Ta có: \(\dfrac{y}{4}=\dfrac{-2}{4}\Leftrightarrow y=-2\)

Vậy: \(\left[{}\begin{matrix}x=8\\y=-2\end{matrix}\right.\)

b) \(\dfrac{1}{x}-\dfrac{2}{y}=\dfrac{3}{1}\Rightarrow\dfrac{y}{x}-2=\dfrac{3}{1}\) (hoán vị ngoại tỉ)

\(\Leftrightarrow\dfrac{y}{x}=\dfrac{5}{1}\). Suy ra nghiệm x,y có dạng \(\left[{}\begin{matrix}x=1k\\y=5k\end{matrix}\right.\left(k\in Z\right)\). Bằng các phép thử lại ta dễ dàng suy ra x,y vô nghiệm.

2: \(A=9^n\cdot81-9^n+3^n\cdot9+3^n\)

\(=9^n\cdot80+3^n\cdot10\)

\(=10\left(9^n\cdot8+3^n\right)⋮10\)

2 tháng 9 2017

Ta có : \(\frac{3x-y}{x+y}=\frac{3}{4}\)

\(\Rightarrow4\left(3x-y\right)=3\left(x+y\right)\)

\(\Rightarrow12x-4y=3x+3y\)

\(\Rightarrow12x-3x=3y+4y\)

\(\Leftrightarrow9x=7y\)

\(\Rightarrow\frac{x}{y}=\frac{7}{9}\)

19 tháng 10 2016

Ta có :

\(A=n^5-5n^3+4n=n\left(n+1\right)=n\left(n-1\right)\left(n-2\right)\left(n+1\right)\left(n+2\right)\)

chia hết cho \(2,3,4,5.\)

b ) Cần chứng minh 

\(A=n\left(n+1\right)\left(n+2\right)\left(n+3\right)+1,n\in N\)*

là một số chính phương .

Ta có : \(A=n\left(n+1\right)\left(n+2\right)\left(n+3\right)+1=\left(n^2+3n\right)\left(n^2+3n+2\right)+1\)

Đặt :   \(n^2+3n=y\) thì 

            \(A=y\left(y+2\right)+1=y^2+2y+1\left(y+1\right)^2\)

         \(\Rightarrow A=\left(n^2+3n+1\right)^2,n\in N\)*