Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Từ \(0\le a\le b+1\le c+2\Rightarrow a+b+1+c+2\le3\left(c+2\right)\)\(\Rightarrow a+b+c+3\le3c+6\)
\(\Rightarrow a+b+c\le3c+3\)
Mà a+b+c=1
\(\Rightarrow1\le3c+3\)
\(\Rightarrow-2\le3c\)
\(\Rightarrow\frac{-2}{3}\le c\)
Để c nhỏ nhất thì c chỉ có thể bằng \(\frac{-2}{3}\)
hhijestfijteryijryihrjgi
huhyhygtftfrhhfmmhjdhmjhmhxffhdfhdfghdfhdfhdfhhhfhhdfhhgfjgjghfghgghghhh
Ta có: \(a^2+b^2+c^2+d^2\ge\frac{\left(a+b\right)^2}{2}+\frac{\left(c+d\right)^2}{2}\)
\(\Leftrightarrow1\ge\frac{\left(a+b\right)^2}{2}+\frac{1}{2}\)
\(\Leftrightarrow a+b\le1\)
Vậy Max a+b=1 khi và chỉ khi a=b=c=d=1/2
xcnhbhjdfb chjb
jckxb nxcnmrehjvsbn
cbjdbfvcm bjkdfbgfmjn
Vì 0 ≤ a ≤ b + 1 ≤ c + 2 nên ta có a + b+c ≤ (c+2)+ (c+2) + c
<=> 1 ≤ 3c+ 4 <=> -3 ≤ 3c <=> -1≤ c
Dấu bằng xảy ra <=> a+b+c=1 và a=b +1 =c+2 <=> a=1, b=0, c=1
=> Giá trị nhỏ nhất của c = -1