Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a^2+b^2+c^2=a^3+b^3+c^3\)
\(< =>\left(a^3-a^2\right)+\left(b^3-b^2\right)+\left(c^3-c^2\right)=0\)
\(< =>a^2\left(a-1\right)+b^2\left(b-1\right)+c^2\left(c-1\right)=0\) (1)
Dễ thấy \(a^2\left(a-1\right);b^2\left(b-1\right);c^2\left(c-1\right)\ge0\) với mọi a,b,c
do đó (1) xảy ra \(< =>a=b=c=1\)
Vậy A=3
Từ \(a^2+b^2+c^2=1\) , ta có thể suy ra rằng \(\hept{\begin{cases}\left|a\right|\le1\\\left|b\right|\le1\\\left|c\right|\le1\end{cases}}\)
Ta Có \(a^2-a^3+b^2-b^3+c^2-c^3=0\)
<=> \(a^2\left(1-a\right)+b^2\left(1-b\right)+c^2\left(1-c\right)=0\)
Nhận thấy \(a^2\left(1-a\right)+b^2\left(1-b\right)+c^2\left(1-c\right)\ge0\)
Nên suy ra \(\hept{\begin{cases}a\left(1-a\right)=0\\b\left(1-b\right)=0\\c\left(1-c\right)=0\end{cases}}\) Vậy tồn tại trong ba số a,b,c có một số bằng 1
Kết hợp Với \(a^2+b^2+c^2=1\)
Suy ra hai số còn lại bằng 0
Vậy \(a+b^2+c^3=1\)
\(\Leftrightarrow\left(a^3+b^3+c^3\right)-\left(a^2+b^2+c^2\right)=0\)
\(\Leftrightarrow\left(a^3-a^2\right)+\left(b^3-b^2\right)+\left(c^3-c^2\right)=0\)
\(\Leftrightarrow a.\left(a^2-1\right)+b.\left(b^2-1\right)+c.\left(c^2-1\right)=0\)
Vì \(a.\left(a^2-1\right)\ge0;b.\left(b^2-1\right)\ge0;c.\left(c^2-1\right)\ge0\)
\(\Rightarrow a.\left(a^2-1\right)=0;b.\left(b^2-1\right)=0;c.\left(c^2-1\right)=0\)
\(\hept{\begin{cases}a.\left(a^2-1\right)=0\\b.\left(b^2-1\right)=0\\c.\left(c^2-1\right)=0\end{cases}\Rightarrow\hept{\begin{cases}a=0;\pm1\\b=0;\pm1\\c=0;\pm1\end{cases}}}\)
rồi bn tings bốt hộ mk
mk mới lớp 6 lên cứ làm bừa
mk giải nhì toán leenbuafw thôi
a)\(x^2+7x+6\)
\(=x^2+6x+x+6\)
\(=x\left(x+6\right)+\left(x+6\right)\)
\(=\left(x+1\right)\left(x+6\right)\)
b)\(x^4+2016x^2+2015x+2016\)
\(=x^4+2016x^2+\left(2016x-x\right)+2016\)
\(=\left(x^4-x\right)+\left(2016x^2+2016x+2016\right)\)
\(=x\left(x-1\right)\left(x^2+x+1\right)+2016\left(x^2+x+1\right)\)
\(=\left(x^2+x+1\right)\left(x^2-x+2016\right)\)
Bài 3:
Từ \(a^2+b^2+c^2+3=2\left(a+b+c\right)\)
\(\Rightarrow a^2+b^2+c^2+3-2a-2b-2c=0\)
\(\Rightarrow\left(a^2-2a+1\right)+\left(b^2-2b+1\right)+\left(c^2-2c+1\right)=0\)
\(\Rightarrow\left(a-1\right)^2+\left(b-1\right)^2+\left(c-1\right)^2=0\) (1)
Ta thấy:\(\begin{cases}\left(a-1\right)^2\ge0\\\left(b-1\right)^2\ge0\\\left(c-1\right)^2\ge0\end{cases}\)
\(\Rightarrow\left(a-1\right)^2+\left(b-1\right)^2+\left(c-1\right)^2\ge0\) (2)
Từ (1) và (2) \(\Rightarrow\begin{cases}\left(a-1\right)^2=0\\\left(b-1\right)^2=0\\\left(c-1\right)^2=0\end{cases}\)
\(\Rightarrow\begin{cases}a-1=0\\b-1=0\\c-1=0\end{cases}\)\(\Rightarrow\begin{cases}a=1\\b=1\\c=1\end{cases}\)
\(\Rightarrow a=b=c=1\Rightarrow H=1\cdot1\cdot1+1^{2014}+1^{2015}+1^{2016}=1+1+1+1=4\)
2. Đặt c + d = x
Ta có: \(a+b+c+d=0\Rightarrow a+b+x=0\Rightarrow a^3+b^3+c^3+d^3=3abx\)
\(\Rightarrow a^3+b^3+c^3+d^3+3cd\left(c+d\right)=3ab\left(c+d\right)\)
\(\Rightarrow a^3+b^3+c^3+d^3=3ab\left(c+d\right)-3cd\left(c+d\right)=3\left(ab-cd\right)\left(c+d\right)\)
Câu 4:
\(a^{2016}+b^{2016}+c^{2016}=a^{1008}b^{1008}+b^{1008}c^{1008}+c^{1008}+a^{1008}\)
\(\Rightarrow2a^{2016}+2b^{2016}+2c^{2016}-2a^{1008}b^{1008}-2b^{1008}c^{1008}-2c^{1008}a^{1008}=0\)
\(\Rightarrow\left(a^{1008}-b^{1008}\right)^2+\left(b^{1008}-c^{1008}\right)^2+\left(c^{1008}-a^{1008}\right)^2=0\)
\(\Rightarrow a^{1008}=b^{1008},b^{1008}=c^{1008},c^{1008}=a^{1008}\)
\(\Rightarrow a=b,b=c,c=a\) (vì a,b,c > 0 nên \(a\ne-b,b\ne-c,c\ne-a\) )
\(\Rightarrow a-b=0,b-c=0,a-c=0\)
Thay vào A ta tính được A = 0
Em tham khảo cách làm tại link: Câu hỏi của Cao Chi Hieu - Toán lớp 9 - Học toán với OnlineMath
Mình xem phép làm câu 1 ạ.
Đề là?
\(\frac{1}{a}+\frac{1}{c}=\frac{2}{b}\)(1)
Chứng minh tương đương
\(\frac{a+b}{2a-b}+\frac{c+b}{2c-b}\ge4\)<=> 12ac - 9bc - 9ab + 6b2 \(\le\)0 ( quy đồng ) (2)
Từ (1) <=> 2ac = ab + bc Thay vào (2) <=> 6ab + 6bc - 9bc - 9ab + 6b2 \(\le\)0
<=> a + c \(\ge\)2b
Từ (1) => \(\frac{2}{b}=\frac{1}{a}+\frac{1}{c}\ge\frac{4}{a+c}\)
=> a + c \(\ge\)2b đúng => BĐT ban đầu đúng
Dấu "=" xảy ra <=> a = c = b