\(a,b,c\)là ba cạnh của một tam giác . Chứng minh:

\(\sqrt...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(\sqrt{a^2+b^2}+\sqrt{b^2+c^2}+\sqrt{c^2+a^2}\ge\sqrt{2}\left(a+b+c\right)\)(1)

\(\sqrt{a^2+b^2}+\sqrt{b^2+c^2}+\sqrt{c^2+a^2}< \sqrt{3}\left(a+b+c\right)\)(2)

Dễ thấy \(\left(a+b\right)^2\le2\left(a^2+b^2\right)\)nên  \(a+b\le\sqrt{2\left(a^2+b^2\right)}\)

Tương tự \(b+c\le\sqrt{2\left(b^2+c^2\right)}\)\(a+c\le\sqrt{2\left(a^2+c^2\right)}\)

\(\Rightarrow2\left(a+b+c\right)\le\sqrt{2}\left(\sqrt{a^2+b^2}+\sqrt{b^2+c^2}+\sqrt{c^2+a^2}\right)\)

\(\Rightarrow\sqrt{2}\left(a+b+c\right)\le\sqrt{a^2+b^2}+\sqrt{b^2+c^2}+\sqrt{c^2+a^2}\)

Do \(a,b,c\)là ba cạnh của một tam giác nên 

\(\left(a-b\right)^2< c^2\Rightarrow a^2+b^2< c^2+2ab\Rightarrow\sqrt{a^2+b^2}< \sqrt{c^2+2ab}\)

Tương tự \(\sqrt{b^2+c^2}< \sqrt{a^2+2bc}\)\(\sqrt{a^2+c^2}< \sqrt{b^2+2ac}\)

Cộng vế theo vế ta được 

\(\sqrt{a^2+b^2}+\sqrt{b^2+c^2}+\sqrt{c^2+a^2}< \sqrt{c^2+2ab}+\sqrt{a^2+2bc}+\sqrt{b^2+2ac}\)

Áp dụng BĐT \(x+y+z\le\sqrt{3\left(x^2+y^2+z^2\right)}\), ta có :

\(\sqrt{c^2+2ab}+\sqrt{a^2+2bc}+\sqrt{b^2+2ac}\le\sqrt{3\left(c^2+2ab+c^2+2bc+b^2+2ac\right)}\)

\(=\sqrt{3\left(a+b+c\right)^2}=\sqrt{3}\left(a+b+c\right)\)

P/s ko bt có đúng ko 

28 tháng 12 2016

2/

  • Chứng minh \(\sqrt{2}\left(a+b+c\right)\le\sqrt{a^2+b^2}+\sqrt{b^2+c^2}+\sqrt{c^2+a^2}\) 

Ta có \(\sqrt{2}.\left(\sqrt{a^2+b^2}+\sqrt{b^2+c^2}+\sqrt{c^2+a^2}\right)\ge2\left(a+b+c\right)\)

\(\Leftrightarrow\sqrt{2}\left(a+b+c\right)\le\sqrt{a^2+b^2}+\sqrt{b^2+c^2}+\sqrt{c^2+a^2}\)

  • Chứng minh \(\sqrt{a^2+b^2}+\sqrt{b^2+c^2}+\sqrt{c^2+a^2}< \sqrt{3}\left(a+b+c\right)\)

Bạn chứng minh bằng biến đổi tương đương

28 tháng 12 2016

1/ \(ab+bc+ac=3abc\Leftrightarrow\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=3\)

Ta có \(\frac{1}{a^2+1}+\frac{1}{b^2+1}+\frac{1}{c^2+1}\le\frac{1}{2a}+\frac{1}{2b}+\frac{1}{2c}=\frac{1}{2}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)=\frac{3}{2}\)

Vậy min P = 3/2 tại a = b = c = 1

13 tháng 9 2017

ta có \(\left(a+b\right)^2\le2\left(a^2+b^2\right)\Rightarrow a+b\le\sqrt{2\left(a^2+b^2\right)}\)

chứng minh tương tự ta cũng có 

\(b+c\le\sqrt{2\left(b^2+c^2\right)};c+a\le\sqrt{2\left(c^2+a^2\right)}\)

cộng các vế của các bdt lại , rồi bạn đưa \(\sqrt{2}\)ra ngoài, bạn sẽ có dpcm 

( phần chứng minh \(< \sqrt{3}\left(a+b+c\right)\)bạn tự chứng minh nhá)  :))

14 tháng 8 2015

+) Chứng minh: \(\sqrt{2}\left(a+b+c\right)\le\sqrt{a^2+b^2}+\sqrt{b^2+c^2}+\sqrt{c^2+a^2}\)

Áp dụng B ĐT Bu nhia có: (a+ b)2 \(\le\) 2(a2 + b2) => \(a+b\le\sqrt{2}.\sqrt{a^2+b^2}\)

Tương tự ta có: \(b+c\le\sqrt{2}.\sqrt{b^2+c^2};c+a\le\sqrt{2}.\sqrt{c^2+a^2}\)

Cộng từng vế của B ĐT trên => \(2.\left(a+b+c\right)\le\sqrt{2}.\left(\sqrt{a^2+b^2}+\sqrt{b^2+c^2}+\sqrt{c^2+a^2}\right)\)

=> \(\sqrt{2}\left(a+b+c\right)\le\sqrt{a^2+b^2}+\sqrt{b^2+c^2}+\sqrt{c^2+a^2}\)

Dấu "=" xảy ra khi a = b = c

+) Chứng minh \(\sqrt{a^2+b^2}+\sqrt{b^2+c^2}+\sqrt{c^2+a^2}<\sqrt{3}\left(a+b+c\right)\) 

Vì a; b; c là 3 cạnh của tam giác nên ta có: (a - b)2 < c2; (b - c)2 < a2 ;  (c -a) 2 < b2

=> a2 + b2 < c2 + 2ab; b2 + c< a+ 2bc ; c+ a< b2 + 2ac

=> \(\sqrt{a^2+b^2}+\sqrt{b^2+c^2}+\sqrt{c^2+a^2}<\sqrt{c^2+2ab}+\sqrt{a^2+2bc}+\sqrt{b^2+2ca}\)

Mặt khác, Dễ dạng chứng minh được (x+ y + z)2 \(\le\) 3.(x2+y2+z2)( Bằng cách biến đổi tuơng đương)

=> \(\left(\sqrt{c^2+2ab}+\sqrt{a^2+2bc}+\sqrt{b^2+2ca}\right)^2\le3\left(c^2+2ab+a^2+2bc+b^2+2ca\right)=3\left(a+b+c\right)^2\)

=> \(\sqrt{c^2+2ab}+\sqrt{a^2+2bc}+\sqrt{b^2+2ca}\le\sqrt{3}\left(a+b+c\right)\)

=> \(\sqrt{a^2+b^2}+\sqrt{b^2+c^2}+\sqrt{c^2+a^2}<\sqrt{3}\left(a+b+c\right)\)

Theo chứng minh này, dấu "=" không thể xảy ra ở Bất đẳng thức thứ 2

Vậy....

13 tháng 10 2016

đi ,nt ,mình giải cho

13 tháng 10 2016

nt là gì

29 tháng 8 2019

TUYÊN TRUYỀN LOẠI CON TRẦN LÊ KIM MAI RA KHỎI OLM MỚI TUẦN TRC ĐIỂM NÓ LÀ 500 THÔI, NHG TUẦN NẦY NÓ LÊN TỚI GẦN 2000, ĐÃ LÊN NHG BỊ OLM TRỪ ĐIỂM DO SỰ TUYÊN TRUYỀN CỦA E Cảm ơn OLM đã trừ điểm con súc vật TRẦN LÊ KIM MAI ,link của nó https://olm.vn/thanhvien/kimmai123az, e rất ghi nhận sự tiến bộ về sự công bằng của olm.Nhưng vẫn còn nhìu cây mà con chó này copy nek, mong olm xét ạ https://olm.vn/hoi-dap/detail/228356929591.html////////https://olm.vn/hoi-dap/detail/228472453946.html/////https://olm.vn/hoi-dap/detail/228437567447.html//////////https://olm.vn/hoi-dap/detail/228435268921.html Vô trangh cá nhân của e sẽ thấy đc những câu trả lời \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\"siêu hay\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\" của con chóhttps://olm.vn/thanhvien/kimmai123az Nó ms lớp 7 mà lamfg đc tón 9, nó tôi bt , là một người ko đàng hoàng , siêu nói tục của OLM, 1 ví dụ điển hình cho con cái nhà ko có giáo dục, nó chửi e là thèm cặc, lồn, bướm lồn, cave, các a chị vô trang cá nhân của e , vô thống kê hỏi đáp sẽ thấy nhg lời thô tục của nó. Em đăng ko để kiếm điểm nhg để vạch trần bộ mặt của con đó, e ko cần điêm làm j, nhg nếu mn thấy đúng thì k cx đc. E ko bốc phốt con chó ấy , đang chỉ ra nhg đứa dốt nát, đi copy bài

29 tháng 8 2019

TUYÊN TRUYỀN LOẠI CON TRẦN LÊ KIM MAI RA KHỎI OLM MỚI TUẦN TRC ĐIỂM NÓ LÀ 500 THÔI, NHG TUẦN NẦY NÓ LÊN TỚI GẦN 2000, ĐÃ LÊN NHG BỊ OLM TRỪ ĐIỂM DO SỰ TUYÊN TRUYỀN CỦA E Cảm ơn OLM đã trừ điểm con súc vật TRẦN LÊ KIM MAI ,link của nó https://olm.vn/thanhvien/kimmai123az, e rất ghi nhận sự tiến bộ về sự công bằng của olm.Nhưng vẫn còn nhìu cây mà con chó này copy nek, mong olm xét ạ https://olm.vn/hoi-dap/detail/228356929591.html////////https://olm.vn/hoi-dap/detail/228472453946.html/////https://olm.vn/hoi-dap/detail/228437567447.html//////////https://olm.vn/hoi-dap/detail/228435268921.html Vô trangh cá nhân của e sẽ thấy đc những câu trả lời \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\"siêu hay\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\" của con chóhttps://olm.vn/thanhvien/kimmai123az Nó ms lớp 7 mà lamfg đc tón 9, nó tôi bt , là một người ko đàng hoàng , siêu nói tục của OLM, 1 ví dụ điển hình cho con cái nhà ko có giáo dục, nó chửi e là thèm cặc, lồn, bướm lồn, cave, các a chị vô trang cá nhân của e , vô thống kê hỏi đáp sẽ thấy nhg lời thô tục của nó. Em đăng ko để kiếm điểm nhg để vạch trần bộ mặt của con đó, e ko cần điêm làm j, nhg nếu mn thấy đúng thì k cx đc. E ko bốc phốt con chó ấy , đang chỉ ra nhg đứa dốt nát, đi copy bài

24 tháng 7 2019

tạm thời chưa nghĩ ra cách dùng \(a^3+b^3\ge a^2b+ab^2=ab\left(a+b\right)\) :'< 

Có: \(\sqrt[3]{4\left(a^3+b^3\right)}=\sqrt[3]{2\left(a+b\right)\left(2a^2-2ab+2b^2\right)}\)

\(=\sqrt[3]{2\left(a+b\right)\left[\frac{1}{2}\left(a+b\right)^2+\frac{3}{2}\left(a-b\right)^2\right]}=\sqrt[3]{2\left(a+b\right)\frac{1}{2}\left(a+b\right)^2}=a+b\)

Tương tự cộng lại ta có đpcm 

Dấu "=" xảy ra \(\Leftrightarrow\)\(a=b=c\)

24 tháng 7 2019

ư ư.. ra r :))))))))) cộng thêm Cauchy-Schwarz nữa nhé 

Có: \(a^3+b^3\ge a^2b+ab^2\)\(\Leftrightarrow\)\(2\left(a^3+b^3\right)\ge a^3+b^3+a^2b+ab^2=\left(a+b\right)\left(a^2+b^2\right)\)

\(\Rightarrow\)\(\sqrt[3]{4\left(a^3+b^3\right)}\ge\sqrt[3]{2\left(a+b\right)\left(a^2+b^2\right)}\ge\sqrt[3]{2\left(a+b\right).\frac{\left(a+b\right)^2}{2}}=a+b\)

Tương tự cộng lại ra đpcm 

AH
Akai Haruma
Giáo viên
16 tháng 8 2017

Lời giải:

Vế đầu tiên:

Áp dụng BĐT AM-GM:

\(a^2+b^2\geq 2ab\Rightarrow 2(a^2+b^2)\geq (a+b)^2\Leftrightarrow a^2+b^2\geq \frac{(a+b)^2}{2}\)

Do đó, \(\sqrt{a^2+b^2}\geq \frac{a+b}{\sqrt{2}}\). Tương tự với các biểu thức còn lại và cộng theo vế:

\(\Rightarrow S\geq \sqrt{2}(a+b+c)\) (đpcm)

Dấu bằng xảy ra khi $a=b=c$

Vế sau:

Áp dụng BĐT Cauchy-Schwarz:

\(S^2\leq (1+1+1)(a^2+b^2+b^2+c^2+c^2+a^2)\)

\(\Leftrightarrow S^2\leq 6(a^2+b^2+c^2)\Leftrightarrow S\leq \sqrt{6(a^2+b^2+c^2)}\) \((1)\)

Ta sẽ cm \(\sqrt{6(a^2+b^2+c^2)}< \sqrt{3}(a+b+c)\)

\(\Leftrightarrow 2(a^2+b^2+c^2)\leq (a+b+c)^2\Leftrightarrow a^2+b^2+c^2\leq 2(ab+bc+ac)\)

\(\Leftrightarrow a(b+c-a)+b(c+a-b)+c(a+b-c)\geq 0\) (luôn đúng vì $a,b,c$ là độ dài ba cạnh tam giác)

Do đó \(\sqrt{6(a^2+b^2+c^2)}<\sqrt{3}(a+b+c)(2)\)

Từ \((1),(2)\Rightarrow S<\sqrt{3}(a+b+c)\)

Vậy ta có đpcm.