Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi số cần tìm có dạng abcTa có: abc = 11 x (a+b+c)=> a x 100 + b x 10 + c = 11 x a + 11 x b + 11 x c=> 89 x a = b + 10 x cVì b; c lớn nhất là 9 nên a = 1 (Duy nhất=1)
Khi đó: 89 = b + 10 x c=> b = 89 - 10 x cVì b không thể số âm và b không thể có 2 chữ số
Nên c = 8 (Chỉ có thể bằng 8).Khi đó b = 89 - 10 x 8 = 9 => b = 9Vậy số cần tìm là 198
Cho abc là số có 3 chữ số, biết a, b , c là số tự nhiên liên tiếp viết theo thứ tự giảm dần. hiệu abc - cba có giá trị là 198
Có: \(x+y\le\sqrt{2\left(x^2+y^2\right)}\) (dấu bằng xảy ra khi và chỉ khi x=y)
Đặt: \(\hept{\begin{cases}abc=x\\def=y\end{cases}}\)Như vậy x+y đạt GTLN khia và chỉ khi x=y do x không ràng buộc khác y
Thật vậy với x=y thì\(abcdef-defabc=0\)chia hết cho 2010
Vì x,y là 2 số tự nhiên có 3 chữ số khác nhau thức không ràng buộc x khác y
Nên: \(x=y=987\)
Max x+y=\(\sqrt{4\cdot987^2}=1974\)
Không viết đúng không
:v
Mình xem đáp án là 1328 với lại mình gõ nhầm;
abc, def là 2 số tự nhiên có 3 chữ số khác nhau. Biết abcdef - defabc chia hết cho 2010. Tìm giá trị lớn nhất của abc + def .
số tự nhiên có 3 chữ số mình sẽ qui ước là abc| (điều kiện: a khác 0; a, b, c là các chữ số trong khoảng từ 0 đến 9)
abc| = (a +b + c)*11
<=> a*100 + b*10 + c = a*11 +b*11 +c*11
<=> a*89 = b + c*10
xét thấy b và c lớn nhất = 9
suy ra vế phải lớn nhất bằng 99
suy ra vế trái lớn nhất bằng 99
suy ra a chỉ có thể bằng 1 (nếu a = 2 thì vế trái đã bằng 178)
a = 1 suy ra
b + c*10 = 89
xét thấy c*10 có tận cùng bằng 0
89 có tận cùng = 9 suy ra b =9 suy ra c =8
thử lại 198 = (1+9+8)*11
d