K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 8 2020

Dễ dàng dự đoán được dấu "=" xảy ra khi \(a=b=c=\frac{1}{3}\)Nhận thấy các đại lượng trong căn và mẫu đồng chưa bậc nên suy nghĩ đầu tiên là đồng bậc. Để ý đến giả thiết a+b+c=1 ta thấy \(a^2+abc=a^2\left(a+b+c\right)+abc=a\left(a+b\right)\left(a+c\right)\)

\(c+ab=a\left(a+b+c\right)+ab=\left(a+c\right)\left(b+c\right)\)

Hoàn toàn tương tự ta có \(b^2+abc=b\left(b+a\right)\left(b+c\right);c^2+abc=c\left(c+b\right)\left(c+a\right)\)

\(b+ac=\left(a+b\right)\left(b+c\right);a+bc=\left(a+b\right)\left(b+c\right)\)

Khi đó bất đẳng thức cần chứng minh trở thành

\(\frac{\sqrt{a\left(a+b\right)\left(a+c\right)}}{\left(a+c\right)\left(b+c\right)}+\frac{\sqrt{b\left(b+c\right)\left(b+a\right)}}{\left(a+b\right)\left(a+c\right)}+\frac{\sqrt{c\left(c+a\right)\left(c+b\right)}}{\left(b+a\right)\left(b+c\right)}\le\frac{1}{2\sqrt{abc}}\)

hay \(\frac{a\sqrt{bc\left(a+b\right)\left(a+c\right)}}{\left(a+c\right)\left(c+b\right)}+\frac{b\sqrt{ab\left(b+c\right)\left(a+b\right)}}{\left(a+b\right)\left(a+c\right)}+\frac{c\sqrt{ab\left(a+b\right)\left(b+c\right)}}{\left(c+b\right)\left(b+a\right)}\le\frac{1}{2\sqrt{abc}}\)

Quan sát bất đẳng thức trên ta liên tưởng đến bất đẳng thức Cauchy, để ý là

\(bc\left(a+b\right)\left(a+c\right)=c\left(a+b\right)\cdot b\left(a+c\right)=b\left(a+b\right)\cdot c\left(a+c\right)\)

Trong 2 cách viết trên ta chọn cách viết thứ nhất vì khi sử dụng bất đẳng thức Cauchy dạng \(2\sqrt{xy}\le x+y\)thì không tạo ra các đại lượng có chứa các bình phương. Khi đó áp dụng bất đẳng thức Cauchy ta được

\(\sqrt{bc\left(a+b\right)\left(a+c\right)}\le\frac{b\left(a+c\right)+c\left(a+b\right)}{2}=\frac{ab+2bc+ca}{2}\)

Áp dụng tương tự ta được

  \(\frac{a\sqrt{bc\left(a+b\right)\left(a+c\right)}}{\left(c+a\right)\left(c+b\right)}+\frac{b\sqrt{ac\left(b+c\right)\left(a+b\right)}}{\left(a+b\right)\left(a+c\right)}+\frac{c\sqrt{ab\left(a+c\right)\left(b+c\right)}}{\left(b+c\right)\left(b+a\right)}\)\(\le\frac{a\left(ab+2bc+ca\right)}{2\left(c+a\right)\left(c+b\right)}+\frac{b\left(ab+bc+2ac\right)}{2\left(a+b\right)\left(a+c\right)}+\frac{c\left(2ab+bc+ca\right)}{2\left(b+c\right)\left(b+a\right)}\)

Phép chứng minh sẽ hoàn tất nếu ta chỉ ra được \(\frac{a\left(ab+2bc+ca\right)}{2\left(c+a\right)\left(c+b\right)}+\frac{b\left(ab+bc+2ac\right)}{2\left(a+b\right)\left(a+c\right)}+\frac{c\left(2ab+bc+ca\right)}{2\left(b+c\right)\left(b+a\right)}\le1\)

hay \(a\left(ab+2bc+ca\right)\left(a+b\right)+b\left(b+c\right)\left(ab+bc+2ca\right)+c\left(c+b\right)\left(2ab+bc+ca\right)\)\(\le\left(a+b\right)\left(b+c\right)\left(c+a\right)\)

Vế trái của bất đẳng thức là bậc bốn còn vế phải là bậc ba nên ta có thể đồng bậc là

\(a\left(ab+2bc+ca\right)+b\left(b+c\right)\left(ab+bc+2ac\right)+c\left(c+b\right)\left(2ab+bc+ca\right)\)

\(\le\left(a+b\right)\left(b+c\right)\left(c+a\right)\left(a+b+c\right)\)

Triển khai và thu gọn ta được \(a^3\left(b+c\right)+b^3\left(c+a\right)+c^3\left(a+b\right)+a^2b^2+b^2c^2+c^2a^2+5\left(a^2bc+ab^2c+abc^2\right)\)

\(\le a^3\left(b+c\right)+b^3\left(a+c\right)+c^3\left(a+b\right)+2\left(a^2b^2+b^2c^2+c^2a^2\right)+4\left(a^2bc+ba^2c+abc^2\right)\)

hay \(abc\left(a+b+c\right)\le a^2b^2+b^2c^2+c^2a^2\), đây là một đánh giá đúng

Dấu đẳng thức xảy ra tại \(a=b=c=\frac{1}{3}\)

NV
13 tháng 1 2024

Từ giả thiết \(\Rightarrow a+b=abc-c=c\left(ab-1\right)\Rightarrow c=\dfrac{a+b}{ab-1}\) (hiển nhiên \(ab-1>0\) do \(a+b>0\))

Đặt \(P=\dfrac{\sqrt{1+a^2}}{a}+\dfrac{\sqrt{1+b^2}}{b}-\sqrt{1+c^2}\)

\(=\dfrac{\sqrt{1+a^2}}{a}+\dfrac{\sqrt{1+b^2}}{b}-\sqrt{1+\left(\dfrac{a+b}{ab-1}\right)^2}\)

\(=\dfrac{\sqrt{1+a^2}}{a}+\dfrac{\sqrt{1+b^2}}{b}-\dfrac{\sqrt{\left(a^2+1\right)\left(b^2+1\right)}}{ab-1}\)

\(\Rightarrow P< \dfrac{\sqrt{1+a^2}}{a}+\dfrac{\sqrt{1+b^2}}{b}-\dfrac{\sqrt{\left(a^2+1\right)\left(b^2+1\right)}}{ab}\)

Đặt \(\left\{{}\begin{matrix}\dfrac{\sqrt{1+a^2}}{a}=\sqrt{1+\dfrac{1}{a^2}}=x>1\\\dfrac{\sqrt{1+b^2}}{b}=\sqrt{1+\dfrac{1}{b^2}}=y>1\end{matrix}\right.\)

\(\Rightarrow P< x+y-xy=x+y-xy-1+1=\left(x-1\right)\left(1-y\right)+1\)

Do \(x>1;y>1\Rightarrow\left(x-1\right)\left(1-y\right)< 0\Rightarrow P< 1\)

14 tháng 5 2018

cm cái gì?

9 tháng 10 2016

ko biết

3 tháng 2 2019

Ta có: \(\frac{1}{\sqrt{1+a^2}}=\sqrt{\frac{abc}{abc+a^2\left(a+b+c\right)}}=\sqrt{\frac{bc}{ac+a^2+ab+ac}}=\sqrt{\frac{bc}{\left(a+b\right)\left(a+c\right)}}\)

Áp dụng bđt Cô-si được

\(\frac{1}{\sqrt{1+a^2}}=\sqrt{\frac{bc}{\left(a+b\right)\left(a+c\right)}}\le\frac{1}{2}\left(\frac{b}{a+b}+\frac{c}{a+c}\right)\)

Thiết lập các bđt còn lại cho 2 số hạng còn lại rồi cộng vào được đpcm

22 tháng 3 2020

1, Ta có \(abc=a+b+c+2\ge4\sqrt[4]{abc.2}\)

<=>\(abc\ge8\)

BĐT <=> \(ab+bc+ac\ge2\left(abc-2\right)\)

<=> \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge2-\frac{2}{abc}\)

Áp dụng \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge\frac{3}{\sqrt[3]{abc}}\)

Khi đó cần CM \(\frac{3}{\sqrt[3]{abc}}\ge2-\frac{2}{abc}\)

Đặt \(\frac{1}{\sqrt[3]{abc}}=x\)=> \(0< x\le2\)

BĐT<=> \(\frac{3}{x}\ge2-\frac{2}{x^3}\)

<=>\(\frac{2}{x^3}+\frac{3}{x}-2\ge0\)

<=> \(2+3x^2-2x^3\ge0\)

<=> \(\left(2-x\right)\left(2x^2+x+1\right)\ge0\)(luôn đúng với \(0< x\le2\))

=> BĐT được CM

Dấu bằng xảy ra khi a=b=c=2

22 tháng 3 2020

2. BĐT <=> \(\frac{1}{\sqrt{ab}}+\frac{1}{\sqrt{bc}}+\frac{1}{\sqrt{ac}}\le\frac{3}{2}\)

Đặt \(a=\frac{y+z}{x};b=\frac{x+z}{y}\left(x.y,z>0\right)\)

=> \(c=\frac{a+b+2}{ab-1}=\frac{\frac{y+z}{x}+\frac{x+z}{y}+2}{\frac{\left(y+z\right)\left(x+z\right)}{xy}-1}=\frac{x^2+y^2+z\left(x+y\right)+2xy}{z\left(x+y+z\right)}=\frac{\left(x+y\right)^2+z\left(x+y\right)}{z\left(x+y+z\right)}=\frac{x+y}{z}\)

Khi đó BĐT <=> \(\frac{1}{\sqrt{\frac{\left(y+z\right)\left(x+z\right)}{xy}}}+\frac{1}{\sqrt{\frac{\left(x+z\right)\left(x+y\right)}{yz}}}+\frac{1}{\sqrt{\frac{\left(x+y\right)\left(y+z\right)}{zx}}}\le\frac{3}{2}\)

<=> \(\sqrt{\frac{xy}{\left(y+z\right)\left(x+z\right)}}+\sqrt{\frac{yz}{\left(x+z\right)\left(x+y\right)}}+\sqrt{\frac{xz}{\left(y+z\right)\left(x+y\right)}}\le\frac{3}{2}\)

Áp dụng cosi ta có 

\(\sqrt{\frac{xy}{\left(y+z\right)\left(x+z\right)}}\le\frac{1}{2}\left(\frac{x}{x+z}+\frac{y}{y+z}\right)\)

Tương tự=> \(VT\le\frac{1}{2}\left(\frac{x}{x+z}+\frac{z}{x+z}+\frac{y}{y+z}+\frac{z}{y+z}+\frac{x}{x+y}+\frac{y}{x+y}\right)=\frac{3}{2}\)(ĐPCM)

Dấu bằng xảy ra khi \(x=y=z\)=> \(a=b=c=2\)

NV
30 tháng 12 2021

Đề bài này sai