K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 12 2017

Có:

\(\dfrac{a}{b+c}+\dfrac{b}{c+a}+\dfrac{c}{a+b}=1\)

\(\Rightarrow\left(\dfrac{a}{b+c}+\dfrac{b}{a+c}+\dfrac{c}{a+b}\right).\left(a+b+c\right)=1.\left(a+b+c\right)\)

\(\Rightarrow\dfrac{a\left(a+b+c\right)}{b+c}+\dfrac{b\left(a+b+c\right)}{a+c}+\dfrac{c\left(a+b+c\right)}{a+b}=a+b+c\)

\(\Rightarrow\dfrac{a^2+a\left(b+c\right)}{b+c}+\dfrac{b^2+b\left(a+c\right)}{a+c}+\dfrac{c^2+c\left( a+b\right)}{a+b}=a+b+c\)

\(\Rightarrow\dfrac{a^2}{b+c}+\dfrac{a\left(b+c\right)}{b+c}+\dfrac{b^2}{a+c}+\dfrac{b\left(a+c\right)}{a+c}+\dfrac{c^2}{a+b}+\dfrac{c\left(a+b\right)}{a+b}=a+b+c\)

\(\Rightarrow\dfrac{a^2}{b+c}+a+\dfrac{b^2}{a+c}+b+\dfrac{c^2}{a+b}+c=a+b+c\)

\(\Rightarrow\dfrac{a^2}{b+c}+\dfrac{b^2}{a+c}+\dfrac{c^2}{a+b}=a+b+c-a-b-c\)

\(\Rightarrow\dfrac{a^2}{b+c}+\dfrac{b^2}{a+c}+\dfrac{c^2}{a+b}=0\)

NV
2 tháng 1 2019

\(\Leftrightarrow a^2\left(\dfrac{1}{a+b}-\dfrac{1}{b+c}\right)+b^2\left(\dfrac{1}{b+c}-\dfrac{1}{c+a}\right)+c^2\left(\dfrac{1}{c+a}-\dfrac{1}{a+b}\right)=0\)

\(\Leftrightarrow\dfrac{a^2\left(c-a\right)}{\left(a+b\right)\left(b+c\right)}+\dfrac{b^2\left(a-b\right)}{\left(a+c\right)\left(b+c\right)}+\dfrac{c^2\left(b-c\right)}{\left(a+b\right)\left(a+c\right)}=0\)

\(\Leftrightarrow a^2\left(c-a\right)\left(c+a\right)+b^2\left(a-b\right)\left(a+b\right)+c^2\left(b-c\right)\left(b+c\right)=0\)

\(\Leftrightarrow a^2\left(c^2-a^2\right)+b^2\left(a^2-b^2\right)+c^2\left(b^2-c^2\right)=0\)

\(\Leftrightarrow a^2c^2+a^2b^2+b^2c^2-a^4-b^4-c^4=0\)

\(\Leftrightarrow2a^4+2b^4+2c^4-2a^2b^2-2a^2c^2-2b^2c^2=0\)

\(\Leftrightarrow\left(a^2-b^2\right)^2+\left(a^2-c^2\right)^2+\left(b^2-c^2\right)^2=0\)

\(\Rightarrow\left\{{}\begin{matrix}a^2-b^2=0\\a^2-c^2=0\\b^2-c^2=0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}\left(a-b\right)\left(a+b\right)=0\\\left(a-c\right)\left(a+c\right)=0\\\left(b-c\right)\left(b+c\right)=0\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}a-b=0\\a-c=0\\b-c=0\end{matrix}\right.\) (do \(\left(a+b\right)\left(a+c\right)\left(b+c\right)\ne0\) \(\Rightarrow\left\{{}\begin{matrix}a+b\ne0\\a+c\ne0\\b+c\ne0\end{matrix}\right.\))

\(\Rightarrow a=b=c\)

22 tháng 11 2017

Hỏi đáp ToánHỏi đáp Toán

22 tháng 11 2017

chưa tìm kĩ đã hỏi haizzzzzzzz

7 tháng 5 2017

Ta có: \(\dfrac{a}{b+c}+\dfrac{b}{a+c}+\dfrac{c}{a+b}=1\)

=> \(\left(a+b+c\right)\left(\dfrac{a}{b+c}+\dfrac{b}{a+c}+\dfrac{c}{a+b}\right)=a+b+c\)

<=> \(\dfrac{a^2}{b+c}+\dfrac{ab}{b+c}+\dfrac{ac}{b+c}+\dfrac{b^2}{a+c}+\dfrac{ab}{a+c}+\dfrac{bc}{a+c}+\dfrac{c^2}{a+b}+\dfrac{ac}{a+b}+\dfrac{bc}{a+b}=a+b+c\)

<=> \(\dfrac{a^2}{b+c}+\dfrac{b^2}{a+c}+\dfrac{c^2}{a+b}+a\left(\dfrac{b}{b+c}+\dfrac{c}{b+c}\right)+b\left(\dfrac{a}{a+c}+\dfrac{c}{a+c}\right)+c\left(\dfrac{a}{a+b}+\dfrac{b}{a+b}\right)=a+b+c\)

<=> \(\dfrac{a^2}{b+c}+\dfrac{b^2}{a+c}+\dfrac{c^2}{a+b}+a+b+c=a+b+c\)

<=> \(\dfrac{a^2}{b+c}+\dfrac{b^2}{a+c}+\dfrac{c^2}{a+b}=0\)

Vậy \(\dfrac{a}{b+c}+\dfrac{b}{a+c}+\dfrac{c}{a+b}=1\) thì \(\dfrac{a^2}{b+c}+\dfrac{b^2}{a+c}+\dfrac{c^2}{a+b}=0\)

7 tháng 5 2017

cảm ơn bn nhiều nha, bn giỏi quá

25 tháng 9 2017

giải m câu kia đi bn

AH
Akai Haruma
Giáo viên
29 tháng 11 2018

Bài 1:

Đặt \(\left(\frac{x}{y}; \frac{y}{z}; \frac{z}{x}\right)=(a,b,c)\Rightarrow abc=1\)

Khi đó:

\(A^2+B^2+C^2-ABC=(b+\frac{1}{b})^2+(c+\frac{1}{c})^2+(a+\frac{1}{a})^2-(a+\frac{1}{a})(b+\frac{1}{b})(c+\frac{1}{c})\)

\(=b^2+\frac{1}{b^2}+2+c^2+\frac{1}{c^2}+2+a^2+\frac{1}{a^2}+2-(ab+\frac{a}{b}+\frac{b}{a}+\frac{1}{ab})(c+\frac{1}{c})\)

\(a^2+b^2+c^2+(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2})+6-[abc+\left(\frac{ab}{c}+\frac{bc}{a}+\frac{ca}{b}\right)+\left(\frac{a}{bc}+\frac{b}{ac}+\frac{c}{ab}\right)+\frac{1}{abc}]\)

\(=a^2+b^2+c^2+\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+6-[1+\left(\frac{abc}{c^2}+\frac{abc}{a^2}+\frac{abc}{b^2}\right)+\left(\frac{a^2}{abc}+\frac{b^2}{abc}+\frac{c^2}{abc}\right)+1]\)

\(=a^2+b^2+c^2+\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+6-[1+(\frac{1}{c^2}+\frac{1}{b^2}+\frac{1}{a^2})+(a^2+b^2+c^2)+1]\)

\(=4\)

AH
Akai Haruma
Giáo viên
29 tháng 11 2018

Câu 2:

Ta có:

\(xy+yz+xz+2xyz=\frac{ab}{(b+c)(c+a)}+\frac{bc}{(c+a)(a+b)}+\frac{ac}{(b+c)(a+b)}+\frac{2abc}{(a+b)(b+c)(c+a)}\)

\(=\frac{ab(a+b)}{(a+b)(b+c)(c+a)}+\frac{bc(b+c)}{(a+b)(b+c)(c+a)}+\frac{ac(a+c)}{(a+b)(b+c)(c+a)}+\frac{2abc}{(a+b)(b+c)(c+a)}\)

\(=\frac{ab(a+b)+bc(b+c)+ca(c+a)+2abc}{(a+b)(b+c)(c+a)}\)

\(=\frac{ab(a+b+c)+bc(b+c+a)+ca(c+a)}{(a+b)(b+c)(c+a)}\)

\(=\frac{(a+b+c)(ab+bc)+ac(a+c)}{(a+b)(b+c)(c+a)}=\frac{(c+a)b(a+b+c)+ac(a+c)}{(a+b)(b+c)(c+a)}\)

\(=\frac{(a+c)[b(a+b+c)+ac]}{(a+b)(b+c)(c+a)}=\frac{(a+c)[b(a+b)+c(a+b)]}{(a+b)(b+c)(c+a)}\)

\(=\frac{(a+c)(b+c)(a+b)}{(a+b)(b+c)(c+a)}=1\)

AH
Akai Haruma
Giáo viên
15 tháng 7 2017

Lời giải:

Ta có

\(\frac{a^2}{b+c}+\frac{b^2}{c+a}+\frac{c^2}{a+b}=\left ( \frac{a}{b+c}+\frac{b}{a+c}+\frac{c}{a+b} \right )(a+b+c)-\frac{a(b+c)}{b+c}-\frac{b(c+a)}{c+a}-\frac{c(a+b)}{a+b}\)

\(=a+b+c-(a+b+c)=0\)

Ta có đpcm

28 tháng 9 2017

1/(a+b) + 1/(b+c) + 1/(c+a) = 4/(a+b+c)

=> [1/(a+b) + 1/(b+c) + 1/(c+a)](a+b+c) = 4

=> 3 + c/(a+b) +a/(b+c) + b/(c+a) = 4

=> [3 + c/(a+b) + a/(b+c) + b/(c+a)](a+b+c) = 4(a+b+c)

=> 3(a+b+c) + c + c2(a+b) + a + a2(b+c) + b + b2(c+a) = 4(a+b+c)

=> a2(b+c) + b2(c+a) + c2(a+b) = 0

Ko cần cảm ơn, mik giúp bạn chỉ vì mik đang sắp rơi vào danh sách học sinh dốt của hoc24h ^^

1 tháng 1 2019

Ta có a+b+c=0 => b+c=-a => a^2=b^2+2bc+c^2=> a^2-b^2-c^2=2bc

Tương tự ta có : b^2-c^2-a^2=2ca

c^2-a^2-b^2=2ab

=> a^2/2bc+b^2/2ca+c^2/2ab=(a^3+b^3+c^3)/2abc

=>Ta lại có a^3+b^3+c^3=(a+b+c)^3+

1 tháng 1 2019

(a+b+c)^3-3(a+b)(b+c)(c+a)=0+3abc=3abc

=> A=3abc/2abc=3/2