Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có :
\(\frac{3a-b}{c}=\frac{3b-c}{a}=\frac{3c-a}{b}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{3a-b}{c}=\frac{3b-c}{a}=\frac{3c-a}{b}=\frac{3a-b+3b-c+3c-a}{a+b+c}=\frac{3\left(a+b+c\right)-\left(a+b+c\right)}{a+b+c}\)
\(=\frac{\left(a+b+c\right)\left(3-1\right)}{a+b+c}=\frac{2\left(a+b+c\right)}{a+b+c}=\frac{2}{1}=2\)
Do đó :
\(\frac{3a-b}{c}=2\)\(\Rightarrow\)\(3a-b=2c\)\(\left(1\right)\)
\(\frac{3b-c}{a}=2\)\(\Rightarrow\)\(3b-c=2a\)\(\left(2\right)\)
\(\frac{3c-a}{b}=2\)\(\Rightarrow\)\(3c-a=2b\)\(\left(3\right)\)
Thay (1), (2) và (3) vào A ta có :
\(A=\frac{a}{2b-3c}+\frac{b}{2c-3a}+\frac{c}{2a-3b}\)
\(A=\frac{a}{3c-a-3c}+\frac{b}{3a-b-3a}+\frac{c}{3b-c-3b}\)
\(A=\frac{a}{-a}+\frac{b}{-b}+\frac{c}{-c}\)
\(A=\left(-1\right)+\left(-1\right)+\left(-1\right)\)
\(A=-3\)
Vậy \(A=-3\)
Chúc bạn học tốt
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{2b+c-a}{a}=\frac{2c-b+a}{b}=\frac{2a+b-c}{c}=\frac{2a+2b+2c}{a+b+c}=\frac{2\left(a+b+c\right)}{a+b+c}=2\)
Do đó :
\(\frac{2b+c-a}{a}=2\)\(\Rightarrow\)\(c=3a-2b\)\(;\)\(2b=3a-c\)\(\left(1\right)\)
\(\frac{2c-b+a}{b}=2\)\(\Rightarrow\)\(a=3b-2c\)\(;\)\(2c=3b-a\)\(\left(2\right)\)
\(\frac{2a+b-c}{c}=2\)\(\Rightarrow\)\(b=3c-2a\)\(;\)\(2a=3c-b\)\(\left(3\right)\)
Thay (1), (2) và (3) vào \(P=\frac{\left(3a-2b\right)\left(3b-2c\right)\left(3c-2a\right)}{\left(3a-c\right)\left(3b-a\right)\left(3c-b\right)}\) ta được :
\(P=\frac{c.a.b}{2b.2c.2a}=\frac{abc}{8abc}=\frac{1}{8}\)
Vậy \(P=\frac{1}{8}\)
Chúc bạn học tốt ~
Phùng Minh Quân sai nha nếu a+b+c = 0 thì a+b+c / 2(a+b+c) thì nó không bằng 1/2 đc mà nó bằng 0
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{2b+c-a}{a}=\frac{2c-b+a}{b}=\frac{2a+b-c}{c}=\frac{2b+c-a+2c-b+a+2a+b-c}{a+b+c}=\frac{2\left(a+b+c\right)}{a+b+c}=2\)
Do đó :
\(\frac{2b+c-a}{a}=2\)\(\Rightarrow\)\(2b=2a+a-c=3a-c\)\(\left(1\right)\)
\(\frac{2c-b+a}{b}=2\)\(\Rightarrow\)\(2c=2b-a+b=3b-a\)\(\left(2\right)\)
\(\frac{2a+b-c}{c}=2\)\(\Rightarrow\)\(2a=2c+c-b=3c-b\)\(\left(3\right)\)
Thay (1), (2) và (3) vào P ta được :
\(P=\frac{\left(3a-2b\right)\left(3b-2c\right)\left(3c-2a\right)}{\left(3a-c\right)\left(3b-a\right)\left(3c-b\right)}\)
\(P=\frac{\left(3a-3a+c\right)\left(3b-3b+a\right)\left(3c-3c+b\right)}{2b.2c.2a}\)
\(P=\frac{abc}{8abc}=\frac{1}{8}\)
Vậy \(P=\frac{1}{8}\)
Chúc bạn học tốt ~
\(\frac{2b+c-a}{a}=\frac{2c-b+a}{b}=\frac{2a+b-c}{c}=\frac{2b+c-a+2c-b+a+2a+b-c}{a+b+c}=\)
\(=\frac{2a+2b+2c}{a+b+c}=2\)
+ Từ \(\frac{2b+c-a}{a}=2\Rightarrow2b+c-a=2a\Rightarrow3a-2b=c\) và \(3a-c=2b\)
+ Tương tự ta cũng có \(3b-2c=a\) và \(3b-a=2c\)
Và \(3c-2a=b\); \(3c-b=2a\)
Thay vào P
\(P=\frac{c.a.b}{2.b.2.c.2.a}=\frac{1}{8}\)
Ta có
\(\frac{2b+c-a}{a}=\frac{2c-b+a}{b}=\frac{2a+b-c}{c}=\frac{2b+c-a+2c-b+a+2a+b-c}{a+b+c}=\frac{2a+2b+2c}{a+b+c}\)
\(=2\)
Từ \(\frac{2b+c-a}{a}=2\Rightarrow2a=2b+c-a\Rightarrow3a-2b=c\)và \(3a-c=2b\)
Tương tự có \(3b-2c=a;3b-a=2c\) và \(3c-2a=b;3c-b=2a\)
Thay vào biểu thức M ta có
\(M=\frac{a\cdot b\cdot c}{2\cdot b\cdot2\cdot a\cdot2\cdot c}=\frac{1}{8}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có : \(\frac{2b+c-a}{a}=\frac{2c-b+a}{b}=\frac{2a+b-c}{c}=\frac{\left(2b+c-a\right)+\left(2c-b+a\right)+\left(2a+b-c\right)}{a+b+c}\)\(=\frac{2a+2c+2a}{a+b+c}=2\)
vậy : \(\frac{2b+c-a}{a}=2\Rightarrow2b+c-a=2a\Rightarrow2b+c-3a=0\Rightarrow3a-2c=c\Rightarrow3a-c=2b\)
\(\frac{2c-b+a}{b}=2\Rightarrow2c-b+a=2b\Rightarrow2c+a-3b=0\Rightarrow3b-2c=a\Rightarrow3b-a=2c\)
\(\frac{2a+b-c}{c}=2\Rightarrow2a+b-c=2c\Rightarrow2a+b-3c=0\Rightarrow3c-2a=b\Rightarrow3c-b=2a\)
Vậy \(P=\frac{\left(3a-2b\right)\left(3b-2c\right)\left(3c-2a\right)}{\left(3a-c\right)\left(3b-a\right)\left(3c-b\right)}=\frac{c.a.b}{2b.2c.2a}=\frac{1}{8}\)
Câu hỏi của Hà My Trần - Toán lớp 7 - Học toán với OnlineMath
Bạn tham khảo câu hỏi ở link này.
Ta có: \(\frac{3a-b}{c}=\frac{3b-c}{a}=\frac{3c-a}{b}\)
Áp dụng tính chất tỉ dãy số bằng nhau. Ta có:
\(\frac{3a-b}{c}=\frac{3b-c}{a}=\frac{3c-a}{b}\Leftrightarrow\frac{3a-b+3b-c+3c-a}{a+b+c}=\frac{3\left(a+b+c\right)-\left(a+b+c\right)}{a+b+c}\)
\(\Leftrightarrow\frac{\left(a+b+c\right)\left(3-1\right)}{a+b+c}=\frac{\left(a+b+c\right)2}{a+b+c}=2\).Do:
\(\frac{3a-b}{c}=\frac{3b-c}{a}=\frac{3c-a}{b}=2\) nên:
\(\Rightarrow3a-b=2c\) (1)
\(\Rightarrow3b-c=2a\) (2)
\(\Rightarrow3c-a=2b\)(3)
Thế (1) ; (2) ; (3) vào A. Ta có:
\(\frac{a}{2b-3c}+\frac{b}{2c-3a}+\frac{c}{2a-3b}\)
\(\Leftrightarrow A=\frac{a}{3c-a-3c}+\frac{b}{3a-b-3a}+\frac{c}{3b-c-3b}\)
\(\Leftrightarrow A=\frac{a}{-a}+\frac{b}{-b}+\frac{c}{-c}\). Do: \(\frac{3a-b}{c}=\frac{3b-c}{a}=\frac{3c-a}{b}\Rightarrow\frac{a}{-a}=\frac{b}{-b}=\frac{c}{-c}=\left(-1\right)\)
\(\Leftrightarrow A=\left(-1\right)+\left(-1\right)+\left(-1\right)=\left(-3\right)\)
P/s: Mình không chắc nên nếu sai thì bạn thông cảm nha
Mình làm thử các bạn xem có đúng ko nhé
Ta có :
\(\frac{3a-b}{c}=\frac{3b-c}{a}=\frac{3c-a}{b}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{3a-b}{c}=\frac{3b-c}{a}=\frac{3c-a}{b}=\frac{3a-b+3b-c+3c-a}{a+b+c}=\frac{3a+3b+3c-a-b-c}{a+b+c}\)
\(=\frac{3\left(a+b+c\right)-\left(a+b+c\right)}{a+b+c}=\frac{\left(a+b+c\right)\left(3-1\right)}{a+b+c}=\frac{2\left(a+b+c\right)}{a+b+c}=\frac{2}{1}=2\)
Do đó :
\(\frac{3a-b}{c}=2\)\(\Rightarrow\)\(3a-b=2c\)\(\left(1\right)\)
\(\frac{3b-c}{a}=2\)\(\Rightarrow\)\(3b-c=2a\)\(\left(2\right)\)
\(\frac{3c-a}{b}=2\)\(\Rightarrow\)\(3c-a=2b\)\(\left(3\right)\)
Thay (1), (2) và (3) vào A ta có :
\(A=\frac{a}{2b-3c}+\frac{b}{2c-3a}+\frac{c}{2a-3b}\)
\(A=\frac{a}{3c-a-3c}+\frac{b}{3a-b-3a}+\frac{c}{3b-c-3b}\)
\(A=\frac{a}{-a}+\frac{b}{-b}+\frac{c}{-c}\)
\(A=\left(-1\right)+\left(-1\right)+\left(-1\right)\)
\(A=-3\)
Vậy \(A=-3\)
Nếu đúng thì thui, sai thì đừng có k sai cho mình nha :)