K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 10 2021

\(a+b=c^3-2024c\\ \Leftrightarrow a+b+c=c^3-2023c=c\left(c^2-2023\right)\)

Với \(c=3k\Leftrightarrow a+b+c⋮3\)

Với \(c=3k+1\Leftrightarrow a+b+c=\left(3k+1\right)\left(9k^2+6k+1-2023\right)\)

\(=\left(3k+1\right)\left(9k^2+6k-2022\right)=3\left(3k+1\right)\left(3k^2+2k-674\right)⋮3\)

Với \(c=3k+2\Leftrightarrow a+b+c=\left(3k+2\right)\left(9k^2+12k+4-2023\right)\)

\(=\left(3k+2\right)\left(9k^2+12k-2019\right)=3\left(3k+2\right)\left(3k^2+4k-673\right)⋮3\)

Do đó \(a+b+c⋮3\)

Ta có \(\left(a^3+b^3+c^3\right)-\left(a+b+c\right)\)

\(=\left(a^3-a\right)+\left(b^3-b\right)+\left(c^3-c\right)\\ =\left(a-1\right)a\left(a+1\right)+\left(b-1\right)b\left(b+1\right)+\left(c-1\right)c\left(c+1\right)\)

Ta thấy các số hạng trong tổng trên đều chia hết cho 6 do là 3 số nguyên lt nên \(\left(a^3+b^3+c^3\right)-\left(a+b+c\right)⋮6\)

Mà \(a+b+c⋮6\) nên ta được đpcm

17 tháng 10 2021

anh cm a+b+c chia hết cho 3 mà có phải cho 6 đâu

6 tháng 10 2019

Mình chứng minh: 

\(\left(a^3+b^3+c^3\right)-\left(a+b+c\right)⋮6\)

tương tự như link: Câu hỏi của Cỏ dại - Toán lớp 8 - Học toán với OnlineMath

Ta có:  \(\left(a^3+b^3+c^3\right)-\left(a+b+c\right)⋮6\) (1 )

( => )

Cho  \(a^3+b^3+c^3⋮6\)

 (1) => \(a+b+c⋮6\)

( <= ) 

Cho:  \(a+b+c⋮6\)  

(1) => \(a^3+b^3+c^3⋮6\)

Vậy \(a^3+b^3+c^3⋮6\)<=> \(a+b+c⋮6\)

8 tháng 10 2019

Câu 2, Do 0<x,y,z<=1 nên ta có:

\(\hept{\begin{cases}\left(x-1\right)\left(y-1\right)\ge0\\\left(y-1\right)\left(z-1\right)\ge0\\\left(z-1\right)\left(x-1\right)\ge0\end{cases}\Leftrightarrow\hept{\begin{cases}xy+1\ge x+y\\yz+1\ge y+z\\xz+1\ge x+z\end{cases}}}\) 

Thay vào VT ta có:

\(VT\le\frac{x}{x+y+z}+\frac{y}{x+y+z}+\frac{z}{x+y+z}=1\)(1)

Do x,y,z <= 1 nên x+y+z <=3 nên \(\frac{3}{x+y+z}\ge\frac{3}{3}=1\)(2)

Từ (1),(2) -> dpcm

9 tháng 10 2019

1/ Vai trò của a, b, c là bình đẳng, không mất tính tổng quát, giả sử \(2\ge a\ge b\ge c\ge0\)

Khi đó \(3=a+b+c\le3a\Rightarrow1\le a\le2\Rightarrow\left(a-1\right)\left(a-2\right)\le0\)

Ta có:

\(LHS=a^3+b^3+c^3\le a^3+b^3+c^3+3bc\left(b+c\right)\)

\(=a^3+\left(b+c\right)^3=a^3+\left(3-a\right)^3\)

\(=9a^2-27a+27=9\left(a-1\right)\left(a-2\right)+9\le9\)

Đẳng thức xảy ra khi a = 2; b = 1; c = 0 và các hoán vị.

P/s: Is that true?

15 tháng 10 2015

a/

-Cauchy-Schwar 

\(P=\sum\frac{a^4}{a\sqrt{b^2+3}}\ge\frac{\left(\sum a^2\right)^2}{\sum a\sqrt{b^2+3}}\)

Côsi: \(\sum a\sqrt{b^2+3}=\frac{1}{2}\sum2a.\sqrt{b^2+3}\le\frac{1}{2}.\sum\frac{\left(2a\right)^2+b^2+3}{2}=\frac{1}{4}.\left[5\left(a^2+b^2+c^2\right)+3.3\right]=6\)

\(\Rightarrow P\ge\frac{3^2}{6}=\frac{3}{2}\)

Đẳng thức xảy ra khi a = b = c = 1.

b/

Côsi: \(8^x+8^x+64\ge3\sqrt[3]{8^x.8^x.64}=12.4^x\Rightarrow8^x\ge6.4^x-32\)

\(\Rightarrow8^x+8^y+8^z\ge6\left(4^x+4^y+4^z\right)-96\)

\(4^x+4^y+4^z\ge3\sqrt[3]{4^{x+y+z}}=3\sqrt[3]{4^6}=48\)

\(\Rightarrow-2\left(4^x+4^y+4^z\right)\le-96\)

\(\Rightarrow8^x+8^y+8^z\ge6\left(4^x+4^y+4^z\right)-2\left(4^x+4^y+4^z\right)=4^{x+1}+4^{y+1}+4^{z+1}\)

27 tháng 4 2017

Xem câu hỏi

NV
26 tháng 10 2019

\(\Leftrightarrow\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+\frac{2}{ab}+\frac{2}{bc}+\frac{2}{ca}=\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\)

\(\Leftrightarrow\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}=0\Leftrightarrow\frac{a+b+c}{abc}=0\)

\(\Rightarrow a+b+c=0\)

\(P=a^3+b^3+c^3=a^3+b^3+3ab\left(a+b\right)+c^3-3ab\left(a+b\right)\)

\(=\left(a+b\right)^3+c^3-3ab\left(a+b\right)\)

\(=\left(a+b+c\right)\left(\left(a+b\right)^2-\left(a+b\right)c+c^2\right)-3ab\left(a+b\right)\)

\(=-3ab\left(a+b\right)⋮3\)

1. a) \(\left\{{}\begin{matrix}x,y,z>0\\xyz=1\end{matrix}\right.\). Tìm max \(P=\frac{1}{\sqrt{x^5-x^2+3xy+6}}+\frac{1}{\sqrt{y^5-y^2+3yz+6}}+\frac{1}{\sqrt{z^5-z^2+zx+6}}\) b) \(\left\{{}\begin{matrix}x,y,z>0\\xyz=8\end{matrix}\right.\). Min \(P=\frac{x^2}{\sqrt{\left(1+x^3\right)\left(1+y^3\right)}}+\frac{y^2}{\sqrt{\left(1+y^3\right)\left(1+z^3\right)}}+\frac{z^2}{\sqrt{\left(1+z^3\right)\left(1+x^3\right)}}\) c) \(x,y,z>0.\) Min...
Đọc tiếp

1. a) \(\left\{{}\begin{matrix}x,y,z>0\\xyz=1\end{matrix}\right.\). Tìm max \(P=\frac{1}{\sqrt{x^5-x^2+3xy+6}}+\frac{1}{\sqrt{y^5-y^2+3yz+6}}+\frac{1}{\sqrt{z^5-z^2+zx+6}}\)

b) \(\left\{{}\begin{matrix}x,y,z>0\\xyz=8\end{matrix}\right.\). Min \(P=\frac{x^2}{\sqrt{\left(1+x^3\right)\left(1+y^3\right)}}+\frac{y^2}{\sqrt{\left(1+y^3\right)\left(1+z^3\right)}}+\frac{z^2}{\sqrt{\left(1+z^3\right)\left(1+x^3\right)}}\)

c) \(x,y,z>0.\) Min \(P=\sqrt{\frac{x^3}{x^3+\left(y+z\right)^3}}+\sqrt{\frac{y^3}{y^3+\left(z+x\right)^3}}+\sqrt{\frac{z^3}{z^3+\left(x+y\right)^3}}\)

d) \(a,b,c>0;a^2+b^2+c^2+abc=4.Cmr:2a+b+c\le\frac{9}{2}\)

e) \(\left\{{}\begin{matrix}a,b,c>0\\a+b+c=3\end{matrix}\right.\). Cmr: \(\frac{a}{b^3+ab}+\frac{b}{c^3+bc}+\frac{c}{a^3+ca}\ge\frac{3}{2}\)

f) \(\left\{{}\begin{matrix}a,b,c>0\\ab+bc+ca+abc=4\end{matrix}\right.\) Cmr: \(\sqrt{ab}+\sqrt{bc}+\sqrt{ca}\le3\)

g) \(\left\{{}\begin{matrix}a,b,c>0\\ab+bc+ca+abc=2\end{matrix}\right.\) Max : \(Q=\frac{a+1}{a^2+2a+2}+\frac{b+1}{b^2+2b+2}+\frac{c+1}{c^2+2c+2}\)

3
26 tháng 4 2020

Câu 1 chuyên phan bội châu

câu c hà nội

câu g khoa học tự nhiên

câu b am-gm dựa vào hằng đẳng thử rồi đặt ẩn phụ

câu f đặt \(a=\frac{2m}{n+p};b=\frac{2n}{p+m};c=\frac{2p}{m+n}\)

Gà như mình mấy câu còn lại ko bt nha ! để bạn tth_pro full cho nhé !

25 tháng 4 2020

Câu c quen thuộc, chém trước:

Ta có BĐT phụ: \(\frac{x^3}{x^3+\left(y+z\right)^3}\ge\frac{x^4}{\left(x^2+y^2+z^2\right)^2}\) \((\ast)\)

Hay là: \(\frac{1}{x^3+\left(y+z\right)^3}\ge\frac{x}{\left(x^2+y^2+z^2\right)^2}\)

Có: \(8(y^2+z^2) \Big[(x^2 +y^2 +z^2)^2 -x\left\{x^3 +(y+z)^3 \right\}\Big]\)

\(= \left( 4\,x{y}^{2}+4\,x{z}^{2}-{y}^{3}-3\,{y}^{2}z-3\,y{z}^{2}-{z}^{3 } \right) ^{2}+ \left( 7\,{y}^{4}+8\,{y}^{3}z+18\,{y}^{2}{z}^{2}+8\,{z }^{3}y+7\,{z}^{4} \right) \left( y-z \right) ^{2} \)

Từ đó BĐT \((\ast)\) là đúng. Do đó: \(\sqrt{\frac{x^3}{x^3+\left(y+z\right)^3}}\ge\frac{x^2}{x^2+y^2+z^2}\)

\(\therefore VT=\sum\sqrt{\frac{x^3}{x^3+\left(y+z\right)^3}}\ge\sum\frac{x^2}{x^2+y^2+z^2}=1\)

Done.