K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 11 2018

Câu hỏi của Đỗ Minh Quang - Toán lớp 9 - Học toán với OnlineMath

Em xem cách làm ở link này nhé!

9 tháng 11 2018

Áp dụng bất đẳng thức coosi ta được:

\(a+b+c\ge2\sqrt{a\left(b+c\right)}\Rightarrow1\ge4a\left(b+c\right)\ge4a\left(b+c\right)^2\)

Mà \(\left(b+c\right)^2\ge4bc\Rightarrow b+c\ge16abc\)

Dấu "=" xảy ra khi \(a=b+c\) và \(b=c\) và \(a+b+c=1\Rightarrow a=\frac{1}{2};b=c=\frac{1}{4}\)

23 tháng 3 2017

Ta có \(b+c=\left(b+c\right).\left(a+b+c\right)^2\) (vì a+b+c=0)

\(\left(a+b+c\right)^2=\left[\left(b+c\right)+a\right]^2\ge4\left(b+c\right).a\)

Do đó \(\left(b+c\right).\left(a+b+c\right)^2\ge4\left(b+c\right)^2.a\ge4.4bc.a=16abc\)vì (b+c)^2>=4bc

dấu = xảy ra thì tự tìm nha bạn

2 tháng 8 2019

a+b+c = 1 mà

21 tháng 1 2017

Chưa cho a,b,c > 0 sao chia 2 vế cho abc đuojwc

21 tháng 1 2017

Chia \(abc\) hai về được BĐT tương đương \(\frac{1}{ab}+\frac{1}{ac}\ge16\)

Áp dụng BĐT \(\frac{1}{x}+\frac{1}{y}\ge\frac{4}{x+y}\) được: \(\frac{1}{ab}+\frac{1}{ac}\ge\frac{4}{ab+ac}=\frac{4}{a\left(b+c\right)}\)

Dưới mẫu bạn áp dụng BĐT \(a\left(b+c\right)\le\frac{\left(a+b+c\right)^2}{4}=\frac{1}{4}\) thì \(\frac{1}{ab}+\frac{1}{ac}\ge16\).

BĐT được chứng minh.

26 tháng 10 2018

Ta có: b + c = (b + c).(a + b + c)^2 (vì a + b + c = 1)
Ta có [ (a + b) + c ]^2 >= 4(a + b)c (vì (x + y)^2 >= 4xy )
<=> (b + c).(a + b + c)^2 >= 4(a + b)^2.c
lại có (a + b)^2 >= 4ab => 4(a + b)^2.c >= 16abc (đpcm)
bạn tự tìm dấu '=' nha

1 tháng 3 2017

mấy bài cơ bản nên cũng dễ, mk có thể giải hết cho bn vs 1 đk : bn đăng từng câu 1 thôi nhé !

1 tháng 3 2017

bài 3 có thể lên gg tìm kỹ thuật AM-GM (cosi) ngược dấu

bài 8 c/m bđt phụ 5b3-a3/ab+3b2 </ 2b-a ( biến đổi tương đương)

những câu còn lại 1 nửa dùng bđt AM-GM , 1 nửa phân tích nhân tử ròi dựa vào điều kiện

8 tháng 8 2019

a, \(BĐT\Leftrightarrow\left(a+b\right)\left(a^2-ab+b^2\right)-ab\left(a+b\right)\ge0\Leftrightarrow\left(a+b\right)\left(a^2-ab+b^2-ab\right)\ge0\)

\(\Leftrightarrow\left(a+b\right)\left(a^2-2ab+b^2\right)\ge0\Leftrightarrow\left(a+b\right)\left(a-b\right)^2\ge0\) (luôn đúng vì a,b>0)

Dấu "=" xảy ra <=> a=b

b, Áp dụng bđt câu a ta có: \(a^3+b^3+1\ge ab\left(a+b\right)+abc=ab\left(a+b+c\right)\)

=>\(\frac{1}{a^3+b^3+1}\le\frac{1}{ab\left(a+b+c\right)}\)

Tương tự \(\frac{1}{b^3+c^3+1}\le\frac{1}{bc\left(a+b+c\right)};\frac{1}{c^3+a^3+1}\le\frac{1}{ca\left(a+b+c\right)}\)

Cộng 3 bđt vế theo vế ta được:

\(VT\le\frac{1}{ab\left(a+b+c\right)}+\frac{1}{bc\left(a+b+c\right)}+\frac{1}{ca\left(a+b+c\right)}=\frac{a+b+c}{abc\left(a+b+c\right)}=\frac{1}{abc}=1\left(đpcm\right)\)

Dấu "=" xảy ra <=> a=b=c=1

14 tháng 5 2017

Sửa đề: Cho \(a,b,c>0\) và \(abc=1\). Chứng minh \(\frac{a}{b}+\frac{b}{c}+\frac{c}{a}\ge a+b+c\)

Cách 1: Áp dụng BĐT Cauchy-Schwarz ta có:

\(\frac{a}{b}+\frac{b}{c}+\frac{c}{a}=\frac{a^2c+b^2a+c^2b}{abc}\ge\frac{\frac{\left(ab+bc+ca\right)^2}{a+b+c}}{abc}\ge a+b+c\)

Cách 2: Áp dụng BĐT AM-GM ta có:

\(\frac{2a}{b}+\frac{b}{c}\ge3\sqrt[3]{\frac{a^2}{bc}}\ge3a\)

Tương tự ta cũng có \(\frac{2b}{c}+\frac{c}{a}\ge3b;\frac{2c}{a}+\frac{a}{b}\ge3c\)

Cộng theo vế và rút gọn ta có ĐPCM

Cách 3: Đặt \(x=\sqrt[9]{\frac{ab^4}{c^2}};y=\sqrt[9]{\frac{ca^4}{b^2}};z=\sqrt[9]{\frac{bc^4}{a^2}}\)

\(\Rightarrow a=xy^2;b=xz^2;c=yz^2\forall xyz\le1\)

Áp dụng BĐT Rearrangement ta có:

\(Σ\frac{a}{b}=Σ\frac{x^2}{yz}\ge xyzΣ\frac{x^2}{yz}=Σx^3\geΣxy^2=Σa\)

4 tháng 10 2017

\(\frac{a^4}{a\left(b+c\right)}+\frac{b^4}{b\left(a+c\right)}+\frac{c^4}{c\left(a+b\right)}\)

ap dung bdt cauchy -schwaz dang engel ta co 

\(\frac{a^4}{a\left(b+c\right)}+\frac{b^4}{b\left(a+c\right)}+\frac{c^4}{c\left(a+b\right)}\ge\frac{\left(a^2+b^2+c^2\right)^2}{2\left(ab+bc+ac\right)}\)\(\)

ma \(a^2+b^2+c^2\ge ab+bc+ac\)

\(\Rightarrow VT\ge\frac{1}{2\left(a^2+b^2+c^2\right)}=\frac{1}{2}\)

dau =xay ra khi \(a=b=c=\frac{1}{\sqrt{3}}\)