\(a;b;c>0\) thỏa \(abc=1\)

Tìm GTNN của

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Y
24 tháng 5 2019

Theo bđt AM-GM :

\(\frac{a^3}{\left(b+1\right)\left(c+1\right)}+\frac{b+1}{8}+\frac{c+1}{8}\)\(\ge3\sqrt[3]{\frac{a^3}{\left(b+1\right)\left(c+1\right)}\cdot\frac{b+1}{8}\cdot\frac{c+1}{8}}=\frac{3a}{4}\)

Dấu "=" xảy ra \(\Leftrightarrow\frac{a^3}{\left(b+1\right)\left(c+1\right)}=\frac{b+1}{8}=\frac{c+1}{8}\)

\(\Leftrightarrow2a=b+1=c+1\)

+ Tương tự ta cm đc :

\(\frac{b^3}{\left(c+1\right)\left(a+1\right)}+\frac{c+1}{8}+\frac{a+1}{8}\ge\frac{3b}{4}\)

Dấu "=" xảy ra \(\Leftrightarrow2a=b+1=c+1\)

\(\frac{c^3}{\left(a+1\right)\left(b+1\right)}+\frac{a+1}{8}+\frac{c+1}{8}\ge\frac{3c}{4}\)

Dấu "=" xảy ra \(\Leftrightarrow2a=a+1=b+1\)

Do đó : \(\frac{a^3}{\left(b+1\right)\left(c+1\right)}+\frac{b^3}{\left(c+1\right)\left(a+1\right)}+\frac{c^3}{\left(a+1\right)\left(b+1\right)}+\frac{a+b+c+3}{4}\ge\frac{3}{4}\left(a+b+c\right)\)

\(\Rightarrow\frac{a^3}{\left(b+1\right)\left(c+1\right)}+\frac{b^3}{\left(c+1\right)\left(a+1\right)}+\frac{c^3}{\left(a+1\right)\left(b+1\right)}\ge\frac{1}{2}\left(a+b+c\right)-\frac{3}{4}\)
\(\ge\frac{1}{2}\cdot3\sqrt[3]{abc}-\frac{3}{4}=\frac{3}{4}\)

Dấu "=" xảy ra <=> a = b = c = 1

24 tháng 5 2019

Áp dụng bđt AM-GM

\(\frac{a^3}{\left(1+b\right)\left(1+c\right)}+\frac{1+b}{8}+\frac{1+c}{8}\ge\frac{3}{4}a\)

\(\frac{b^3}{\left(1+c\right)\left(1+a\right)}+\frac{1+c}{8}+\frac{1+b}{8}\ge\frac{3}{4}b\)

\(\frac{c^3}{\left(1+a\right)\left(1+b\right)}+\frac{1+a}{8}+\frac{1+b}{8}\ge\frac{3}{4}c\)

\(\Rightarrow A+\frac{6+2a+2b+2c}{8}\ge\frac{3}{4}\left(a+b+c\right)\)

\(\Rightarrow A+\frac{3}{4}\ge\frac{1}{2}\left(a+b+c\right)\ge\frac{3}{2}\sqrt[3]{abc}=\frac{3}{2}\)

\(\Rightarrow A\ge\frac{3}{4}\)

\("="\Leftrightarrow a=b=c=1\)

23 tháng 5 2017

Áp dụng bất đẳng thức Cauchy - Schwarz 

\(\Rightarrow\frac{a^3}{\left(1+b\right)\left(1+c\right)}+\frac{1+b}{8}+\frac{1+c}{8}\ge3\sqrt[3]{\frac{a^3}{64}}=\frac{3a}{4}\)

Tượng tự ta có \(\hept{\begin{cases}\frac{b^3}{\left(1+c\right)\left(1+a\right)}+\frac{1+c}{8}+\frac{1+a}{8}\ge\frac{3b}{4}\\\frac{c^3}{\left(1+a\right)\left(1+b\right)}+\frac{1+a}{8}+\frac{1+b}{8}\ge\frac{3c}{4}\end{cases}}\)

\(\Rightarrow VT+\frac{3}{4}+\frac{a+b+c}{4}\ge\frac{3\left(a+b+c\right)}{4}\)

\(\Rightarrow VT\ge\frac{a+b+c}{2}-\frac{3}{4}\)(1) 

Áp dụng bất đẳng thức Cauchy - Schwarz 

\(\Rightarrow a+b+c\ge3\sqrt[3]{abc}=3\)

\(\Rightarrow\frac{a+b+c}{2}-\frac{3}{4}\ge\frac{3}{4}\)(2) 

Từ (1) và (2) 

\(\Rightarrow VT\ge\frac{3}{4}\)( đpcm ) 

Dấu " = " xảy ra khi \(a=b=c=1\)

22 tháng 2 2020

\(P=\left[\left(2+\frac{1}{a}+\frac{1}{b}\right)+1\right]\left[\left(2+\frac{1}{b}+\frac{1}{c}\right)+1\right]\left[\left(2+\frac{1}{c}+\frac{1}{a}\right)+1\right]\)

\(\ge\left(6\sqrt[3]{\frac{1}{4ab}}+1\right)\left(6\sqrt[3]{\frac{1}{4bc}}+1\right)\left(6\sqrt[3]{\frac{1}{4ca}}+1\right)\)

\(\ge\left[7\sqrt[7]{\left(\sqrt[3]{\frac{1}{4ab}}\right)^6}\right]\left[7\sqrt[7]{\left(\sqrt[3]{\frac{1}{4bc}}\right)^6}\right]\left[7\sqrt[7]{\left(\sqrt[3]{\frac{1}{4ca}}\right)^6}\right]\)

\(=\left[7\sqrt[7]{\left(\frac{1}{4ab}\right)^2}\right]\left[7\sqrt[7]{\left(\frac{1}{4bc}\right)^2}\right]\left[7\sqrt[7]{\left(\frac{1}{4ca}\right)^2}\right]\)

\(=343\sqrt[7]{\left(\frac{1}{64\left(abc\right)^2}\right)^2}\ge343\sqrt[7]{\left(\frac{1}{64\left[\frac{\left(a+b+c\right)^3}{27}\right]^2}\right)^2}=343\)

Đẳng thức xảy ra khi \(a=b=c=\frac{1}{2}\)

P/s: Em chưa check lại đâu nha::D

22 tháng 2 2020

Khúc cuối bài ban nãy là \(\ge343\) nha! Em đánh nhầm

Cách khác (em thử dùng Holder, mới học nên em không chắc lắm):

\(P\ge\left(3+\sqrt[3]{\frac{1}{abc}}+\sqrt[3]{\frac{1}{abc}}\right)^3=\left(3+2\sqrt[3]{\frac{1}{abc}}\right)^3\ge\left(3+2\sqrt[3]{\frac{1}{\left[\frac{\left(a+b+c\right)^3}{27}\right]}}\right)^3\ge343\)

5 tháng 2 2020

Áp dụng BĐT Cô-si cho 3 số dương, ta có :

\(\frac{1}{a\left(a+b\right)}+\frac{1}{b\left(b+c\right)}+\frac{1}{c\left(a+c\right)}\ge3\sqrt[3]{\frac{1}{abc\left(a+b\right)\left(b+c\right)\left(a+c\right)}}\)

Cần chứng minh : \(\sqrt[3]{\frac{1}{abc\left(a+b\right)\left(b+c\right)\left(a+c\right)}}\ge\frac{9}{2\left(a+b+c\right)^2}\)

hay \(8\left(a+b+c\right)^6\ge729abc\left(a+b\right)\left(b+c\right)\left(a+c\right)\)

Thật vậy, ta có : \(\left(a+b+c\right)^3\ge\left(3\sqrt[3]{abc}\right)^3=27abc\)

\(8\left(a+b+c\right)^3=\left(2\left(a+b+c\right)\right)^3=\left(a+b+b+c+a+c\right)^3\)

\(\ge\left(3\sqrt[3]{\left(a+b\right)\left(b+c\right)\left(a+c\right)}\right)^3=27\left(a+b\right)\left(b+c\right)\left(a+c\right)\)

Nhân từng vế 2 bất đẳng thức trên, ta được đpcm

Dấu "=" xảy ra khi a = b = c 

Vậy ...

5 tháng 2 2020

2. Áp dụng BĐT Cô-si cho 3 số không âm, ta có : 

\(B\ge3\sqrt[3]{\sqrt{\left(a^3+b^3+1\right)\left(b^3+c^3+1\right)\left(a^3+c^3+1\right)}}\)

Ta có : \(a^3+b^3+1\ge3\sqrt[3]{a^3b^3}=3ab\Rightarrow\sqrt{a^3+b^3+1}\ge\sqrt{3ab}\)

Tương tự : ....

\(\Rightarrow\sqrt{\left(a^3+b^3+1\right)\left(b^3+c^3+1\right)\left(c^3+a^3+1\right)}\ge\sqrt{27a^2b^2c^2}=\sqrt{27}\)

\(\Rightarrow B\ge3\sqrt[3]{\sqrt{27}}=3\sqrt{3}\)

Vậy GTNN của B là \(3\sqrt{3}\)khi a = b = c = 1

7 tháng 12 2017

bài 1

ÁP dụng AM-GM ta có:

\(\frac{a^3}{b\left(2c+a\right)}+\frac{2c+a}{9}+\frac{b}{3}\ge3\sqrt[3]{\frac{a^3.\left(2c+a\right).b}{b\left(2c+a\right).27}}=a.\)

tương tự ta có:\(\frac{b^3}{c\left(2a+b\right)}+\frac{2a+b}{9}+\frac{c}{3}\ge b,\frac{c^3}{a\left(2b+c\right)}+\frac{2b+c}{9}+\frac{a}{3}\ge c\)

công tất cả lại ta có:

\(P+\frac{2a+b}{9}+\frac{2b+c}{9}+\frac{2c+a}{9}+\frac{a+b+c}{3}\ge a+b+c\)

\(P+\frac{2\left(a+b+c\right)}{3}\ge a+b+c\)

Thay \(a+b+c=3\)vào ta được":

\(P+2\ge3\Leftrightarrow P\ge1\)

Vậy Min là \(1\)

dấu \(=\)xảy ra khi \(a=b=c=1\)

4 tháng 8 2017

abc = 1 \(\Rightarrow\frac{1}{abc}=1\Rightarrow xyz=1\)

Đặt \(a=\frac{1}{x}\);  \(b=\frac{1}{y}\);   \(c=\frac{1}{z}\)(x, y, z > 0)

\(\Leftrightarrow\hept{\begin{cases}\frac{1}{a^3}=x^3\\\frac{1}{b+c}=\frac{1}{\frac{1}{y}+\frac{1}{z}}=\frac{1}{\frac{y+z}{yz}}=\frac{yz}{y+z}\end{cases}\Leftrightarrow\frac{1}{a^3\left(b+c\right)}=\frac{x^3yz}{y+z}=\frac{x^2}{y+z}}\)

Tương tự, ta có :

\(\frac{1}{b^3\left(a+c\right)}=\frac{y^2}{z+x}\)

\(\frac{1}{c^3\left(a+b\right)}=\frac{z^2}{x+y}\)

Ta cần cm :   \(\frac{x^2}{y+z}+\frac{y^2}{z+x}+\frac{z^2}{x+y}\ge\frac{3}{2}\)

Áp dụng bđt Cau chy cho x, y, z > 0

\(\frac{x^2}{y+z}+\frac{y+z}{4}\ge2\sqrt{\frac{x^2}{4}}=x\)

\(\frac{y^2}{z+x}+\frac{z+x}{4}\ge y\)

\(\frac{z^2}{x+y}+\frac{x+y}{4}\ge z\)

\(\Leftrightarrow\frac{x^2}{y+z}+\frac{y^2}{z+x}+\frac{z^2}{x+y}\ge\frac{x+y+z}{2}\)

Ta cần cm :    \(\frac{x+y+z}{2}\ge\frac{3}{2}\)

\(\Leftrightarrow x+y+z\ge3\)

Áp dụng bđt Cauchy cho x, y, z> 0

\(x+y+z\ge3\sqrt[3]{xyz}=3\)

30 tháng 8 2020

trong tập chuyên đề về Svac-xơ cũng có câu này , còn về cách chứng minh thì easy lắm 

Do \(abc=1\)Nên có thể viết lại bđt cần chứng minh trở thành :

\(\frac{a^2b^2c^2}{a^3\left(b+c\right)}+\frac{a^2b^2c^2}{b^3\left(a+c\right)}+\frac{a^2b^2c^2}{c^3\left(a+b\right)}\ge\frac{3}{2}\)

\(< =>\frac{b^2c^2}{a\left(b+c\right)}+\frac{a^2c^2}{b\left(a+c\right)}+\frac{a^2b^2}{c\left(a+b\right)}\ge\frac{3}{2}\)

Sử dụng bất đẳng thức Svac-xơ ta có : 

\(\frac{b^2c^2}{a\left(b+c\right)}+\frac{a^2c^2}{b\left(a+c\right)}+\frac{a^2b^2}{c\left(a+b\right)}\ge\frac{\left(ab+bc+ca\right)^2}{ab+ac+ba+bc+ca+cb}\)

\(=\frac{\left(ab+bc+ca\right)^2}{2\left(ab+bc+ca\right)}=\frac{ab+bc+ca}{2}\)

Phép chứng minh sẽ hoàn tất nếu ta chỉ ra được \(ab+bc+ca\ge3\), thật vậy :

Sử dụng bất đẳng thức AM-GM cho 3 số thực dương ta có :

\(ab+bc+ca\ge3\sqrt[3]{abbcca}=3\sqrt[3]{a^2b^2c^2}=3\left(đpcm\right)\)

Dấu "=" xảy ra khi và chỉ khi \(a=b=c=1\)

9 tháng 8 2019

2) Theo nguyên lí Dirichlet, trong ba số \(a^2-1;b^2-1;c^2-1\) có ít nhất hai số nằm cùng phía với 1.

Giả sử đó là a2 - 1 và b2 - 1. Khi đó \(\left(a^2-1\right)\left(b^2-1\right)\ge0\Leftrightarrow a^2b^2-a^2-b^2+1\ge0\)

\(\Rightarrow a^2b^2+3a^2+3b^2+9\ge4a^2+4b^2+8\)

\(\Rightarrow\left(a^2+3\right)\left(b^2+3\right)\ge4\left(a^2+b^2+2\right)\)

\(\Rightarrow\left(a^2+3\right)\left(b^2+3\right)\left(c^2+3\right)\ge4\left(a^2+b^2+1+1\right)\left(1+1+c^2+1\right)\) (2)

Mà \(4\left[\left(a^2+b^2+1+1\right)\left(1+1+c^2+1\right)\right]\ge4\left(a+b+c+1\right)^2\) (3)(Áp dụng Bunhicopxki và cái ngoặc vuông)

Từ (2) và (3) ta có đpcm.

Sai thì chịu

9 tháng 8 2019

Xí quên bài 2 b:v

b) Không mất tính tổng quát, giả sử \(\left(a^2-\frac{1}{4}\right)\left(b^2-\frac{1}{4}\right)\ge0\)

Suy ra \(a^2b^2-\frac{1}{4}a^2-\frac{1}{4}b^2+\frac{1}{16}\ge0\)

\(\Rightarrow a^2b^2+a^2+b^2+1\ge\frac{5}{4}a^2+\frac{5}{4}b^2+\frac{15}{16}\)

Hay \(\left(a^2+1\right)\left(b^2+1\right)\ge\frac{5}{4}\left(a^2+b^2+\frac{3}{4}\right)\)

Suy ra \(\left(a^2+1\right)\left(b^2+1\right)\left(c^2+1\right)\ge\frac{5}{4}\left(a^2+b^2+\frac{1}{4}+\frac{1}{2}\right)\left(\frac{1}{4}+\frac{1}{4}+c^2+\frac{1}{2}\right)\)

\(\ge\frac{5}{4}\left(\frac{1}{2}a+\frac{1}{2}b+\frac{1}{2}c+\frac{1}{2}\right)^2=\frac{5}{16}\left(a+b+c+1\right)^2\) (Bunhiacopxki) (đpcm)

Đẳng thức xảy ra khi \(a=b=c=\frac{1}{2}\)

12 tháng 11 2019

Cho e làm thử ạ:(

\(P=\frac{\left(1+a\right)\left(1+b\right)\left(1+c\right)}{\left(1-a\right)\left(1-b\right)\left(1-c\right)}\)

\(=\frac{a+b+c+ab+bc+ca+abc+1}{1-\left(a+b+c\right)+ab+bc+ca-abc}\)

\(=1+\frac{2\left(a+b+c\right)+2abc}{1-\left(a+b+c\right)+\left(ab+bc+ca\right)-abc}\)

\(=1+\frac{2+2abc}{ab+bc+ca-abc}\)

Đặt \(\left(a+b+c;ab+bc+ca;abc\right)\rightarrow\left(p,q,r\right)\)

Khi đó \(P=1+\frac{2+2r}{q-r}\)

Áp dụng \(3q\le p^2\Rightarrow q\le\frac{1}{3}\Rightarrow P\ge1+\frac{2+2r}{\frac{1}{3}-r}=1+\frac{6+6r}{1-3r}\)

 Sau khi đưa P về 1 biến thì e tịt ngòi r ạ:( Đến đây thì đi kiểu nào cx ngược dấu:( 

12 tháng 11 2019

Ta có: \(a+b+c=1\); a, b , c > 0 => 0 < a; b; c <1 

=> \(\hept{\begin{cases}1+a=\left(1-b\right)+\left(1-c\right)\ge2\sqrt{\left(1-b\right)\left(1-c\right)}\\1+b=\left(1-c\right)+\left(1-a\right)\ge2\sqrt{\left(1-c\right)\left(1-a\right)}\\1+c=\left(1-a\right)+\left(1-b\right)\ge2\sqrt{\left(1-a\right)\left(1-b\right)}\end{cases}}\)

=> \(\left(1+a\right)\left(1+b\right)\left(1+c\right)\ge8\left(1-a\right)\left(1-b\right)\left(1-c\right)\)

=> \(P\ge8\)

"=" xảy ra <=>  a = b =c = 1/ 3