Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ta có : \(\dfrac{a^3}{b}+\dfrac{b^3}{c}+\dfrac{c^3}{a}=\dfrac{a^3}{b}+bc+\dfrac{b^3}{c}+ca+\dfrac{c^3}{a}+ab-\left(ac+bc+ab\right)\)
\(=\dfrac{a^3}{b}+bc+\dfrac{b^3}{c}+ca+\dfrac{c^3}{a}+ab-\left(\dfrac{ab}{2}+\dfrac{bc}{2}+\dfrac{ab}{2}+\dfrac{ac}{2}+\dfrac{bc}{2}+\dfrac{ac}{2}\right)\)
\(\ge2.\sqrt{\dfrac{a^3}{b}.bc}+2\sqrt{\dfrac{b^3}{c}.ca}+2\sqrt{\dfrac{c^3}{a}.ab}-2\sqrt{\dfrac{ab.bc}{4}}-2\sqrt{\dfrac{ab.ac}{4}}-2\sqrt{\dfrac{bc.ac}{4}}\)
\(\ge2a\sqrt{ac}+2b\sqrt{ba}+2c\sqrt{cb}-b\sqrt{ac}-a\sqrt{bc}-c\sqrt{ab}=a\sqrt{ac}+b\sqrt{ba}+c\sqrt{cb}\left(ĐPCM\right)\)
Áp dụng BĐT cauchy-schwarz:
\(\dfrac{a^3}{b}+\dfrac{b^3}{c}+\dfrac{c^3}{a}\ge\dfrac{\left(a^2+b^2+c^2\right)^2}{ab+bc+ca}\ge a^2+b^2+c^2\ge\dfrac{1}{3}\left(a+b+c\right)^2\)
BĐT cần chứng minh tương đương :
\(\left(a+b+c\right)^2\ge3\left(\sqrt{a^3c}+\sqrt{b^3a}+\sqrt{c^3b}\right)\)
Thật vậy, Áp dụng BĐT \(\left(X+Y+Z\right)^2\ge3\left(XY+YZ+ZX\right)\)
Với \(\left\{{}\begin{matrix}X=a+\sqrt{bc}-\sqrt{ac}\\Y=b+\sqrt{ac}-\sqrt{ab}\\Z=c+\sqrt{ab}-\sqrt{bc}\end{matrix}\right.\) ta có ngay ĐPCM. ( mất chút time khai triển)
Dấu = xảy ra khi X=Y=Z hay a=b=c
Ko lq nhưng ta chuẩn hóa \(a+b+c=3\). So:
\(M\ge\dfrac{\left(a+b+c\right)^2}{2\left(a+b+c\right)}=\dfrac{3}{2}\)
Lời giải:
Đặt \(\left(\sqrt{\frac{a}{b}},\sqrt{\frac{b}{c}},\sqrt{\frac{c}{a}}\right)=(x,y,z)\). BĐT cần chứng minh chuyển về:
\(x^3+y^3+z^3\geq x^2+y^2+z^2\) với \(xyz=1\)
Thật vậy, áp dụng BĐT Cauchy-Schwarz:
\((x^3+y^3+z^3)(x+y+z)\geq (x^2+y^2+z^2)^2\)
\(\Leftrightarrow x^3+y^3+z^3\geq \frac{(x^2+y^2+z^2)^2}{x+y+z}\)(1)
Theo BĐT AM-GM:
\(x^2+y^2+z^2\geq xy+yz+xz\Leftrightarrow 2(x^2+y^2+z^2)\geq 2(xy+yz+xz)\)
\(\Leftrightarrow 3(x^2+y^2+z^2)\geq (x+y+z)^2\)
\(\Leftrightarrow (x^2+y^2+z^2)\geq \frac{(x+y+z)^2}{3}\geq \frac{(x+y+z).3\sqrt[3]{xyz}}{3}=x+y+z\) (2)
Từ (1),(2)\(\Rightarrow x^3+y^3+z^3\geq x^2+y^2+z^2\) (đpcm)
Dấu bằng xảy ra khi \(x=y=z=1\Leftrightarrow a=b=c\)
Bài 3:
Áp dụng bất đẳng thức AM - GM có:
\(x+y+z+\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\ge2\sqrt{x.\dfrac{1}{x}}+2\sqrt{y.\dfrac{1}{y}}+2\sqrt{z.\dfrac{1}{z}}\)
\(=2+2+2=6\)
Dấu " = " khi x = y = z = 1
Vậy...
3. Với x,y,z>0 áp dụng BĐT Cauchy ta có
\(x+y+z+\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\)
\(=\left(x+\dfrac{1}{x}\right)+\left(y+\dfrac{1}{y}\right)+\left(z+\dfrac{1}{z}\right)\)
\(\ge2\sqrt{x.\dfrac{1}{x}}+2\sqrt{y.\dfrac{1}{y}}+2\sqrt{z.\dfrac{1}{z}}=2+2+2=6\)
Đẳng thức xảy ra \(\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{1}{x}\\y=\dfrac{1}{y}\\z=\dfrac{1}{z}\end{matrix}\right.\Leftrightarrow x=y=z=1\)
1. Với a=b=c=0, ta thấy BĐT trên đúng
Với a,b,c>0 áp dụng BĐT Cauchy cho 3 số dương
\(a^3+a^3+b^3\ge3\sqrt[3]{a^3.a^3.b^3}=3\sqrt[3]{a^6b^3}=3a^2b\) (1)
\(b^3+b^3+c^3\ge3\sqrt[3]{b^3.b^3.c^3}=3\sqrt[3]{b^6c^3}=3b^2c\) (2)
\(c^3+c^3+a^3\ge3\sqrt[3]{c^3.c^3.a^3}=3\sqrt[3]{c^6a^3}=3c^2a\) (3)
Cộng (1), (2), (3) vế theo vế:
\(a^3+b^3+c^3\ge a^2b+b^2c+c^2a>\dfrac{a^2b+b^2c+c^2a}{3}\) (vì a,b,c>0)
Do đó BĐT trên đúng \(\forall a,b,c\ge0\)
b) \(\dfrac{\sqrt{a}}{\sqrt{a}-\sqrt{b}}-\dfrac{\sqrt{b}}{\sqrt{a}+\sqrt{b}}-\dfrac{2b}{a-b}\)
\(=\dfrac{\sqrt{a}}{\sqrt{a}-\sqrt{b}}-\dfrac{\sqrt{b}}{\sqrt{a}+\sqrt{b}}-\dfrac{2b}{\left(\sqrt{a}-\sqrt{b}\right)\left(\sqrt{a}+\sqrt{b}\right)}\)
\(=\dfrac{\sqrt{a}\left(\sqrt{a}+\sqrt{b}\right)-\sqrt{b}\left(\sqrt{a}-\sqrt{b}\right)-2b}{\left(\sqrt{a}-\sqrt{b}\right)\left(\sqrt{a}+\sqrt{b}\right)}\)
\(=\dfrac{a+\sqrt{ab}-\sqrt{ab}+b-\sqrt{ab}+b-2b}{a-b}\)
\(=\dfrac{a}{a-b}\)
Đặt x=\sqrt{\dfrac{a}{b}},y=\sqrt{\dfrac{b}{c}},z=\sqrt{\dfrac{c}{a}}x=ba,y=cb,z=ac thì x,y,z>0x,y,z>0 và xyz=1xyz=1 . Bất đẳng thức cần chứng minh trở thành x^3+y^3+z^3\ge x^2+y^2+z^2x3+y3+z3≥x2+y2+z2.
Áp dụng bất đẳng thức Cô si cho 3 số dương ta có
x^3+x^3+1^3\ge3\sqrt[3]{x^3.x^3.1^3}x3+x3+13≥33x3.x3.13 hay 2x^3+1\ge3x^22x3+1≥3x2.
Tương tự, 2y^3+1\ge3y^2;2z^3+1\ge3z^22y3+1≥3y2;2z3+1≥3z2. Cộng theo vế các bất đẳng thức nhận được ta có 2\left(x^3+y^3+z^3\right)+3\ge2\left(x^2+y^2+z^2\right)+\left(x^2+y^2+z^2\right)2(x3+y3+z3)+3≥2(x2+y2+z2)+(x2+y2+z2)
=2\left(x^2+y^2+z^2\right)+3\sqrt[3]{x^2y^2z^2}=2(x2+y2+z2)+33x2y2z2
\ge2\left(x^2+y^2+z^2\right)+3\sqrt[3]{1}≥2(x2+y2+z2)+331
Do đó x^3+y^3+z^3\ge x^2+y^2+z^2x3+y3+z3≥x2+y2+z2. Đẳng thức xảy ra khi và chỉ khi
x=y=z=1\Leftrightarrow a=b=c>0x=y=z=1⇔a=b=c>0.
x=y=z=1